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1 Let L be an arbitrary regular language.

1.A. Prove that the language palin(L){w | wwR ∈ L} is also regular.
1.B. Prove that the language drome(L){w | wRw ∈ L} is also regular.

2 Suppose F is a fooling set for a language L. Argue that F cannot contain two distinct string x, y
where both are not prefixes of strings in L.

3 Prove that the language {0i1j | gcd(i, j) = 1} is not regular.

4 Consider the language L = {w : |w| = 1 mod 5}. We have already seen that this language is
regular. Prove that any DFA that accepts this language needs at least 5 states.

5 Consider all regular expressions over an alphabet Σ. Each regular expression is a string over a
larger alphabet Σ′ = Σ∪{∅-Symbol, ε-Symbol,+, (, )}. We use ∅-Symbol and ε-Symbol in place of
∅ and ε to avoid confusion with overloading; technically one should do it with +, (, ) as well. Let
RΣ be the language of regular expressions over Σ.

5.A. Prove that RΣ is not regular.
5.B. Prove that RΣ is a CFL by giving a CFG for it.

6 Regular languages?

6.A. Prove that the following languages are not regular by providing a fooling set. You need to
prove an infinite fooling set and also prove that it is a valid fooling set.

6.A.i. L = {0k1kww | 0 ≤ k ≤ 3, w ∈ {0, 1}+}.
6.A.ii. Recall that a block in a string is a maximal non-empty substring of identical symbols.

Let L be the set of all strings in {0, 1}∗ that contain two blocks of 0s of equal length.
For example, L contains the strings 01101111 and 01001011100010 but does not contain
the strings 000110011011 and 00000000111.

6.A.iii. L = {0n3 | n ≥ 0}.
6.B. Suppose L is not regular. Show that L ∪ L′ is not regular for any finite language L′. Give a

simple example to show that L ∪ L′ is regular when L′ is infinite.

7 Describe a context free grammar for the following languages. Clearly explain how they work and
the role of each non-terminal. Unclear grammars will receive little to no credit.

7.A. {aibjckd` | i, j, k, ` ≥ 0 and i+ ` = j + k}.
7.B. L = {0, 1}∗ \ {0n1n | n ≥ 0}. In other words the complement of the language {0n1n | n ≥ 0}.

8 Let L = {0i1j2k | k = 2(i+ j)}.
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8.A. Prove that L is context free by describing a grammar for L.
8.B. Prove that your grammar is correct. You need to prove that if L ⊆ L(G) and L(G) ⊆ L

where G is your grammar from the previous part.

Solved problem

9 Let L be the set of all strings over {0, 1}∗ with exactly twice as many 0s as 1s.

9.A. Describe a CFG for the language L.(
Hint: For any string u define ∆(u) = #(0, u)− 2#(1, u). Introduce intermediate variables

that derive strings with ∆(u) = 1 and ∆(u) = −1 and use them to define a non-terminal
that generates L.

)
Solution:

S → ε | SS | 00S1 | 0S1S0 | 1S00

9.B. Prove that your grammar G is correct. As usual, you need to prove both L ⊆ L(G) and
L(G) ⊆ L.(
Hint: Let u≤i denote the prefix of u of length i. If ∆(u) = 1, what can you say about the

smallest i for which ∆(u≤i) = 1? How does u split up at that position? If ∆(u) = −1, what
can you say about the smallest i such that ∆(u≤i) = −1?

)
Solution:

We separately prove L ⊆ L(G) and L(G) ⊆ L as follows:

Claim 4.1. L(G) ⊆ L, that is, every string in L(G) has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u)−2#(1, u). We need
to prove that ∆(w) = 0 for every string w ∈ L(G).

Let w be an arbitrary string in L(G), and consider an arbitrary derivation of w of
length k. Assume that ∆(x) = 0 for every string x ∈ L(G) that can be derived with fewer
than k productions.1 There are five cases to consider, depending on the first production
in the derivation of w.
• If w = ε, then #(0, w) = #(1, w) = 0 by definition, so ∆(w) = 0.
• Suppose the derivation begins S → SS →∗ w. Then w = xy for some strings x, y ∈

L(G), each of which can be derived with fewer than k productions. The inductive
hypothesis implies ∆(x) = ∆(y) = 0. It immediately follows that ∆(w) = 0.2

• Suppose the derivation begins S → 00S1 →∗ w. Then w = 00x1 for some string
x ∈ L(G). The inductive hypothesis implies ∆(x) = 0. It immediately follows that
∆(w) = 0.

• Suppose the derivation begins S → 1S00 →∗ w. Then w = 1x00 for some string
x ∈ L(G). The inductive hypothesis implies ∆(x) = 0. It immediately follows that
∆(w) = 0.
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• Suppose the derivation begins S → 0S1S1 →∗ w. Then w = 0x1y0 for some strings
x, y ∈ L(G). The inductive hypothesis implies ∆(x) = ∆(y) = 0. It immediately
follows that ∆(w) = 0.

In all cases, we conclude that ∆(w) = 0, as required.

Claim 4.2. L ⊆ L(G); that is, G generates every binary string with exactly twice as
many 0s as 1s.

Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u)− 2#(1, u). For any
string u and any integer 0 ≤ i ≤

∣∣u∣∣, let ui denote the ith symbol in u, and let u≤i denote
the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G
generates every binary string x that is shorter than w and has twice as many 0s as 1s.
There are two cases to consider:
• If w = ε, then ε ∈ L(G) because of the production S → ε.
• Suppose w is non-empty. To simplify notation, let ∆i = ∆(w≤i) for every index i, and

observe that ∆0 = ∆∣∣∣∣w∣∣∣∣ = 0. There are several subcases to consider:

– Suppose ∆i = 0 for some index 0 < i <
∣∣w∣∣. Then we can write w = xy, where

x and y are non-empty strings with ∆(x) = ∆(y) = 0. The induction hypothesis
implies that x, y ∈ L(G), and thus the production rule S → SS implies that
w ∈ L(G).

– Suppose ∆i > 0 for all 0 < i <
∣∣w∣∣. Then w must begin with 00, since otherwise

∆1 = −2 or ∆2 = −1, and the last symbol in w must be 1, since otherwise
∆∣∣∣∣w∣∣∣∣−1

= −1. Thus, we can write w = 00x1 for some binary string x. We easily

observe that ∆(x) = 0, so the induction hypothesis implies x ∈ L(G), and thus
the production rule S → 00S1 implies w ∈ L(G).

– Suppose ∆i < 0 for all 0 < i <
∣∣w∣∣. A symmetric argument to the previous

case implies w = 1x00 for some binary string x with ∆(x) = 0. The induction
hypothesis implies x ∈ L(G), and thus the production rule S → 1S00 implies
w ∈ L(G).

– Finally, suppose none of the previous cases applies: ∆i < 0 and ∆j > 0 for some
indices i and j, but ∆i 6= 0 for all 0 < i <

∣∣w∣∣.
Let i be the smallest index such that ∆i < 0. Because ∆j either increases by 1

or decreases by 2 when we increment j, for all indices 0 < j <
∣∣w∣∣, we must have

∆j > 0 if j < i and ∆j < 0 if j ≥ i.
In other words, there is a unique index i such that ∆i−1 > 0 and ∆i < 0. In

particular, we have ∆1 > 0 and ∆∣∣∣∣w∣∣∣∣−1
< 0. Thus, we can write w = 0x1y0 for

some binary strings x and y, where
∣∣0x1∣∣ = i.

We easily observe that ∆(x) = ∆(y) = 0, so the inductive hypothesis implies
x, y ∈ L(G), and thus the production rule S → 0S1S0 implies w ∈ L(G).

In all cases, we conclude that G generates w.

Together, Claim 1 and Claim 2 imply L = L(G).

3



Rubric: 10 points:
• part (a) = 4 points. As usual, this is not the only correct grammar.
• part (b) = 6 points = 3 points for ⊆ + 3 points for ⊇, each using the standard induction

template (scaled).
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