Submission instructions as in previous homeworks.

10 (100 PTS.) OLD Homework problem (not for submission):

Aberrant.
10.A. (25 PTS.) Prove that the following language is not regular by providing a fooling set. You need to prove an infinite fooling set and also prove that it is a valid fooling set. For $\Sigma=\{a, b\}$, the language is

$$
L=\left\{w w \mid w \in \Sigma^{+}\right\} .
$$

10.B. (25 PTs.) Same as (A) for the following language. Recall that a run in a string is a maximal non-empty substring of identical symbols. Let L be the set of all strings in Σ^{*} that contains two distinct runs of equal length. A few examples about L :

- L contains any string of the form $b^{i} a^{+} b^{+} a^{i}$.
- L contains any string of the form $b^{i} a^{+} b^{i}$.
- L does not contain the strings abbaaa, abbaaabbbb.
10.C. (25 PTs.) Suppose you are given two languages L, L^{\prime} that are not regular but such that $L^{\prime} \backslash L$ is regular. Prove that $L \cup L^{\prime}$ is not regular. (Hint: Use closure properties of regular languages.)
10.D. (15 PTS .) Provide a counter-example for the following claim:

Claim: Consider two languages L and L^{\prime}. If \bar{L} is not regular, L^{\prime} is regular, and $L \cup L^{\prime}$ is regular, then $L \cap L^{\prime}$ is regular.
10.E. (10 PTS.) (Slightly harder ${ }^{1}$) Same as (A) for $L=\left\{0^{n^{4}} \mid n \geq 3\right\}$.

11 (100 PTS.) OLD Homework problem (not for submission):

 Grammar it.Describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
11.A. (40 PTS.) $\left\{a^{i} b^{j} c^{k} d^{\ell} e^{t} \mid i, j, k, \ell, t \geq 0\right.$ and $\left.i+j+k+t=\ell\right\}$.
11.B. (60 PTs.) (Harder.) $L=\left\{z \in\{a, b, c\}^{*} \mid\right.$ there is a suffix y of z s.t. $\left.\#_{a}(y)>\#_{b}(y)\right\}$.
(Hint: First solve for the case that z has no cs.)
12 (100 PTS.) OLD Homework problem (not for submission):
As easy as $1,2,3,6$.
Let $L=\left\{a^{i} b^{j} c^{k} \mid k=i+j\right\}$.

[^0]12.A. (20 PTS.) Prove that L is context free by describing a grammar for L.
12.B. (80 PTs.) Prove that your grammar is correct. (See extra problems for an example of how this is done.)

[^0]: ${ }^{1}$ Feel free to use IDK.

