(100 pts.) OLD Homework problem (not for submission):

For each of the following languages in 7.A.–7.C., draw an NFA that accepts them. Your automata should have a small number of states. Provide a short explanation of your solution, if needed.

7.A. (25 pts.) All strings in \(\{0, 1, 2\}^* \) such that at least one of the symbols 0, 1, or 2 occurs at most 4 times. (Example: 1200201220210 is in the language, since 1 occurs 3 times.)

7.B. (25 pts.) \(((01)^*(10)^* + 00)^* \cdot (1 + 00 + \varepsilon) \cdot (11)^*\).

7.C. (25 pts.) All strings in \(\{0, 1\}^* \) such that the last symbol is the same as the third last symbol. (Example: 1100101 is in the language, since the last and the third last symbol are 1.)

7.D. (25 pts.) Use the power-set construction (also called subset construction) to convert your NFA from 7.C. to a DFA. You may omit unreachable states.

(100 pts.) OLD Homework problem (not for submission):

Fun with parity.

Given \(L \subseteq \{0, 1\}^* \), define \(\text{even}_0(L) \) to be the set of all strings in \(\{0, 1\}^* \) that can be obtained by taking a string in \(L \) and inserting an even number of 0’s (anywhere in the string). Similarly, define \(\text{odd}_0(L) \) to be the set of all strings \(x \) in \(\{0, 1\}^* \) that can be obtained by taking a string in \(L \) and inserting an odd number of 0’s.

(Example: if 01101 \(\in L \), then 01010000100 \(\in \text{even}_0(L) \).)

(Another example: if \(L \) is 1*, then \(\text{even}_0(L) \) can be described by the regular expression \((1^*01^0)^*1^*\).)

The purpose of this question is to show that if \(L \subseteq \{0, 1\}^* \) is regular, then \(\text{even}_0(L) \) and \(\text{odd}_0(L) \) are regular.

8.A. (30 pts.) For each of the base cases of regular expressions \(\emptyset, \varepsilon, 0, \) and 1, give regular expressions for \(\text{even}_0(L(r)) \) and \(\text{odd}_0(L(r)) \).

8.B. (60 pts.) Given regular expressions for \(e_j = \text{even}_0(L(r_j)) \) and \(o_j = \text{odd}_0(L(r_j)) \), for \(j \in \{1, 2\} \), give regular expressions for

(i) \(\text{even}_0(L(r_1 + r_2)) \)
(ii) \(\text{odd}_0(L(r_1 + r_2)) \)
(iii) \(\text{even}_0(L(r_1r_2)) \)
(iv) \(\text{odd}_0(L(r_1r_2)) \)
(v) \(\text{even}_0(L(r_1^*)) \)
(vi) \(\text{odd}_0(L(r_1^*)) \)

Give brief justification of correctness for each of the above.
8.C. (10 pts.) Using the above, describe (shortly) a recursive algorithm that given a regular expression \(r \), outputs a regular expression for \(\text{even}_0(L(r)) \) (similarly describe the algorithm for computing \(\text{odd}_0(L(r)) \)).

9. (100 pts.) OLD Homework problem (not for submission):

"+1".

Let binary\((i)\) denote the binary representation of a positive integer \(i\). (Note that the string binary\((i)\) must start with a 1.)

Given a language \(L \subseteq \{0, 1\}^* \), define \(\text{INC}(L) = \{\text{binary}(i + 1) \mid \text{binary}(i) \in L\} \). For the time being assume that \(L \) does not contain any string of \(1^* \).

(Example: for \(L = \{100, 10101, 1101\} \), we have \(\text{INC}(L) = \{101, 101100, 1110\} \).)

9.A. (30 pts.) Given a DFA \(M = (Q, \Sigma, \delta, s, A) \) for \(L \), describe informally (in a few sentences) how to construct an NFA \(M_w \) for \(\text{INC}(L) \).

9.B. (30 pts.) Given a DFA \(M = (Q, \Sigma, \delta, s, A) \) for \(L \), describe formally how to construct an NFA \(M' \) for \(\text{INC}(L) \).

9.C. (30 pts.) Prove formally the correctness of your construction from (9.B.). That is, prove that \(\text{INC}(L) = L(M') \).

9.D. (10 pts.) Describe formally how to modify the construction of \(M' \) from above, to handle that general case (without the above assumption) that \(L \) might also contain strings of the form \(1^* \). You do not need to provide a proof of correctness of the new automata.