CS 374: Algorithms & Models of Computation, Spring 2015

NP Completeness

Lecture 23 November 19, 2015

Part I

NP-Completeness

P and NP and Turing Machines

- P: set of decision problems that have polynomial time algorithms.
- OP: set of decision problems that have polynomial time verification algorithms.
- Many natural problems we would like to solve are in NP.
- Every problem in *NP* has an exponential time algorithm (try verifying each possible certificate).
- $P \subseteq NP$
- So some problems in *NP* are in *P* (example, shortest path problem)

Big Question: Does every problem in *NP* have an efficient algorithm? Same as asking whether P = NP.

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- e Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem **X** is said to be **NP-Complete** if

- $X \in NP$, and
- **(Hardness)** For any $Y \in NP$, $Y \leq_P X$.

NP-Complete Problems

Definition A problem X is said to be NP-Complete if $X \in NP$, and (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Recall reduction: $Y \leq_P X$ means that an instance of Y can be efficiently modeled as an instance of X.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

 \Rightarrow Suppose X can be solved in polynomial time

- Let $\mathbf{Y} \in \mathbf{NP}$. We know $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.
- We showed that if Y ≤_P X and X can be solved in polynomial time, then Y can be solved in polynomial time.
- **3** Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
- Since $P \subseteq NP$, we have P = NP.

 \Leftarrow Since **P** = **NP**, and **X** \in **NP**, we have a polynomial time algorithm for **X**.

NP-Hard Problems

Definition

A problem **X** is said to be **NP-Hard** if

(Hardness) For any $Y \in NP$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving **X** implies P = NP.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving **X** implies $\mathbf{P} = \mathbf{NP}$.

X is unlikely to be efficiently solvable.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving **X** implies P = NP.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving **X** implies P = NP.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any "natural" problems that are NP-Complete?

Answer

Yes! Many, many important problems are **NP-Complete**.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT *is* NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

- **SAT** is in NP.
- **2** every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as SAT to X

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

- 3-SAT is in NP
- SAT \leq_P 3-SAT as we saw

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- **2** SAT \leq_P 3-SAT
- **3-SAT** \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- Independent Set ≤_P Clique
- **3-SAT** \leq_P **3-Color**
- 3-SAT \leq_P Hamiltonian Cycle

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- **2** SAT \leq_P 3-SAT
- **3-SAT** \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- **Independent Set** \leq_P Clique
- **3-SAT** \leq_P **3-Color**
- **③** 3-SAT ≤_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

NP-Completeness via Reductions

Part II

Reducing 3-SAT to Independent Set

Problem: Independent Set

Instance: A graph G, integer k. **Question:** Is there an independent set in G of size k?

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a **3**CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about **3SAT**

There are two ways to think about **3SAT**

• Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

There are two ways to think about **3SAT**

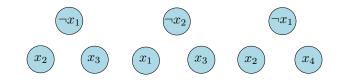
- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

We will take the second view of **3SAT** to construct the reduction.

() G_{φ} will have one vertex for each literal in a clause



19 / 37

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Chandra & Lenny (UIUC) CS374 19 Spring 2015

G_φ will have one vertex for each literal in a clause
Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

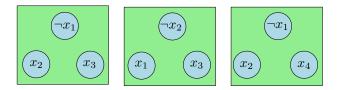


Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Chandra & Lenny (UIUC) CS374 19

G_φ will have one vertex for each literal in a clause
Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

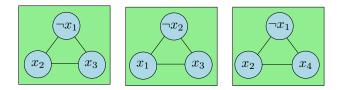


Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Chandra & Lenny (UIUC) CS374 19

- G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict

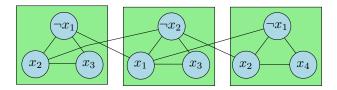


Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Chandra & Lenny (UIUC) CS374

19

Spring 2015

19 / 37

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

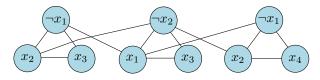


Figure: Graph for

 $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \Rightarrow Let **a** be the truth assignment satisfying φ

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let *a* be the truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

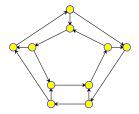
- $\leftarrow \text{ Let } \mathbf{S} \text{ be an independent set of size } \mathbf{k}$
 - **S** must contain *exactly* one vertex from each clause
 - **§** S cannot contain vertices labeled by conflicting literals
 - Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Part III

NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

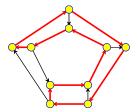
Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian cycle?



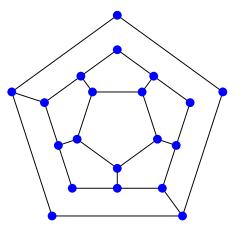
Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once



Is the following graph Hamiltonian?



(A) Yes.(B) No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: Why?
- Hardness: We will show
 3-SAT ≤_P Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

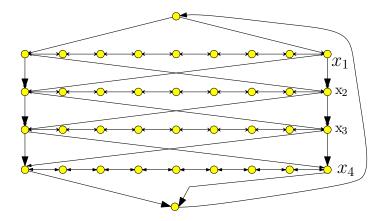
- G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

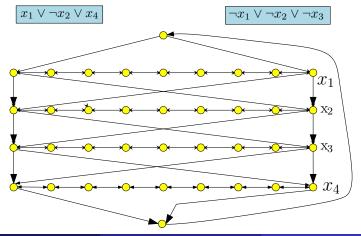
Reduction: First Ideas

- Viewing SAT: Assign values to *n* variables, and each clause has multiple ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

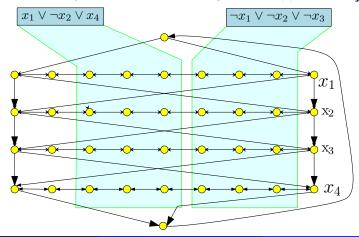
- Traverse path *i* from left to right iff *x_i* is set to true
- Each path has 3(m + 1) nodes where m is number of clauses in φ; nodes numbered from left to right (1 to 3m + 3)

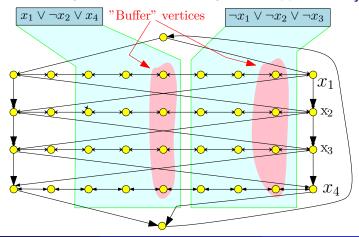


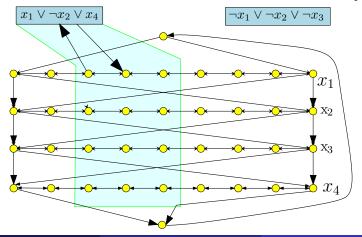
Add vertex c_j for clause C_j. c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j, and has edge from vertex 3j + 1 and to vertex 3j if ¬x_i appears in C_i.

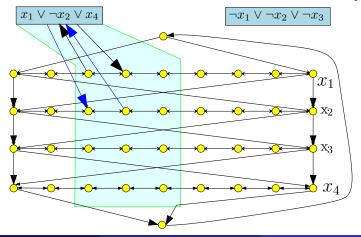


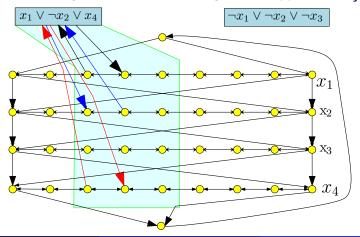
Chandra & Lenny (UIUC)

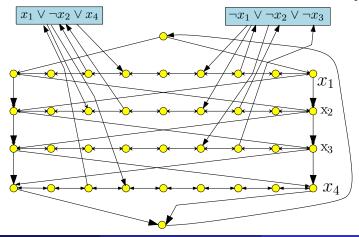












Correctness Proof

Proposition

arphi has a satisfying assignment iff G_{arphi} has a Hamiltonian cycle.

Proof.

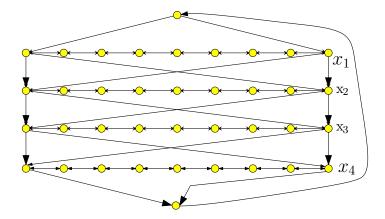
- \Rightarrow Let a be the satisfying assignment for $\varphi.$ Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path *i* from left to right
 - If $a(x_i) = 0$ then traverse path *i* from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j + 1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path *i* is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

Example



Hamiltonian Cycle \implies Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_j$
- Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Hamiltonian Cycle

Problem

Input Given undirected graph G = (V, E)

Goal Does *G* have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem

Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

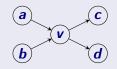
- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle

Reduction

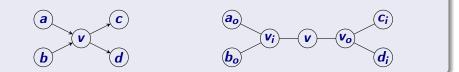
• Replace each vertex v by 3 vertices: vin, v, and vout



Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle

Reduction

• Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}



Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle

Reduction

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (x, y) is replaced by edge (x_{out}, y_{in})



Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)