P and NP

Lecture 22

Today

Computational Complexity

P, NP, PSPACE, EXP

NP-completeness
Non-deterministic Turing Machines

Resource Bounded Computation

Interested in solving problems using limited time/memory

$$
T \text {-time TM: }
$$

On any input of length n, halts within $T(n)$ steps.

Polynomial-Time TM:

T-time TM where T is some polynomial

$$
\text { e.g., } T(n)=2 n+100, T(n)=5 n^{2}+1, T(n)=n^{42}+1 .
$$

S-Space TM:
On any input of length n, uses at most $S(n)$ tape cells. Polynomial-Space TM: When S is a polynomial

P, PSPACE, EXP

Sub-classes of \mathbf{R}, the class of all decidable languages
$\mathbf{P}=$ class of languages decided by polynomial-time TMs.

PSPACE = class of languages decided by polynomial-space TMs.

EXP = class of languages decided by exponential-time TMs.

\mathbf{P} as feasible computation

The most standard proxy for "feasible" computation
Caveat: n^{50} is not feasible, even for small values of n.
Why not model say, n^{4} as feasible?
Will be model dependent: depends on 1-tape TM vs. k-tape TM, TM vs. RAM, size of the tape alphabet etc.

Typically, polynomial overheads when simulating one model in another. Hence \mathbf{P} is the same class in all such models.

Typically, for interesting problems in \mathbf{P}, reasonably efficient algorithms have been developed.
(But this is provably impossible for all of \mathbf{P}.)

NP

An important class of languages

Informally: NP is the class of languages with an efficiently verifiable certificate of membership
e.g., $L_{\text {Sudoku }}=$ Set of all generalized $\left(n^{2} \times n^{2}\right)$ Sudoku puzzles with a solution

Membership certificate: a solution. Efficiently verifiable
(Linear time to check that all columns, rows and the $n \times n$ cells satisfy the rules in each solution)

NP

Informally: NP is the class of languages with an efficiently verifiable certificate of membership

Intuitively, for many problems it is much easier to verify a solution than to find one (or to find out that one doesn't exist)

Major Open Question:

Prove that this is the case for even one langua, ye!
May not have an
easy-to-verify certificate of
non-membership

NP

Formally:

$L \in \mathbf{N} \mathbf{P}$ iff $\exists V \in \mathbf{P}$ and a polynomial p s.t. $L=\left\{x \mid \exists w \in\{0,1\}^{p(t x)}\right.$ s.t. $\left.(x, w) \in V\right\}$

Note: We insist $|w|$ is polynomial in $|x|$, so that the verification can be done in time polynomial in $|x|$:

Suppose V can be decided by a p^{\prime} time-bounded TM. Then time to verify the certificate:

$$
\begin{gathered}
p^{\prime}(|(x, w)|)=\mathrm{O}\left(p^{\prime}(|x|+|w|)\right)=\mathrm{O}\left(p^{\prime}(|x|+p(|x|))\right) \leq p^{\prime \prime}(|x|) \\
\text { for some polynomial } p^{\prime \prime}
\end{gathered}
$$

NP: Examples

L in $\mathbf{N P}$: there is V in \mathbf{P} s.t.
$L=\{x \mid \exists w$ (short) s.t. $(x, w) \in V\}$
All the languages in \mathbf{P}

$$
\begin{gathered}
\text { Suppose } L \in \mathbf{P} \\
\text { Let } V=\{(x, \varepsilon) \mid x \in L\} \text { so that } \\
L=\{x \mid \exists w \in\{0,1\} 0 \text { s.t. }(x, w) \in V\} \\
\text { where } V \in \mathbf{P}
\end{gathered}
$$

$\mathbf{P} \subseteq \mathbf{N P}$

NP: Examples

L in $\mathbf{N P}$: there is V in \mathbf{P} s.t.
$L=\{x \mid \exists w$ (short) s.t. $(x, w) \in V\}$
Checking if there is a structure
$L_{\text {Hamilton }}=\{G \mid G$ has a Hamiltonian Cycle $\}$
$V_{\text {Hamilton }}=\{(G, C) \mid C$ is a Hamiltonian Cycle in $G\}$
$L_{\text {Clique }}=\left\{(G, t) \mid G\right.$ has a subgraph isomorphic to $\left.K_{t}\right\}$
$V_{\text {Clique }}=\left\{(G, t, H) \mid H\right.$ is a subgraph of G isomorphic to $\left.K_{t}\right\}$

NP: Examples

L in $\mathbf{N P}$: there is V in \mathbf{P} s.t.
$L=\{x \mid \exists w$ (short) s.t. $(x, w) \in V\}$

Checking if there is a sufficiently good solution to an optimization problem
$L_{\text {TSP }}=\{(G, t) \mid G$ is a graph with a TSP tour of cost $\leq t\}$ $V_{\mathrm{TSP}}=\{(G, t, P) \mid P$ is a TSP tour in G with cost $\leq t\}$

Traveling Sales-person
Problem

NP: Examples

L in $\mathbf{N P}$: there is V in \mathbf{P} s.t.
$L=\{x \mid \exists w$ (short) s.t. $(x, w) \in V\}$

In an axiomatic system, checking if a mathematical theorem has a proof (with at most t characters)
$L_{\text {Prove }}=\{(\Pi, t) \mid \Pi$ is a statement with a proof of size $\leq t\}$

$$
V_{\text {Prove }}=\{(\Pi, t, P) \mid P \text { is a proof of } \Pi \text { with size } \leq t\}
$$

NP: Examples

L in $\mathbf{N P}$: there is V in \mathbf{P} s.t.
$L=\{x \mid \exists w$ (short) s.t. $(x, w) \in V\}$

Breaking a Public-Key Encryption Scheme: Recovering the secret-key from a public-key
$L_{\text {PKE-Keys }}=\{(P K, w) \mid P K$ is a public-key whose secret-key has w as a prefix $\}$
$V_{\text {PKE-keys }}=\{(P K, w, S K) \mid$ secret-key $S K$ yields public-key $P K$ and has prefix w \}

If $\mathbf{P}=\mathbf{N P}$, then?

Suppose any $L \in \mathbf{N P}$ can be decided in time say, quadratic in the time to decide its certificate language V

Can solve large-scale optimization problems (save large amounts of energy, material and other resources)

Prove many outstanding mathematical theorems (if they have proofs short enough for mathematicians to derive manually)

Make Public-Key Cryptography impossible
We believe $\mathbf{P} \neq \mathbf{N P}$, and that these problems don't have polynomial-time algorithms!

Complexity of NP

Best known algorithms for many problems in NP take exponential time

How hard can problems in NP be?

Do they all have at least exponential time algorithms?
Yes!
To check if $x \in L$, can try every possible value of w and check if $(x, w) \in V$

NP \subseteq PSPACE

For any $L \in \mathbf{N P}$, a polynomial-space TM M_{L}.
Run through every possible value of $w \in\{0,1\}^{p(x \mid)}$ and call a polynomial-time subroutine M_{V} to check if

$$
(x, w) \in V
$$

Suppose M_{V} is a p^{\prime}-time TM. Total space?
M_{V} is a p^{\prime}-space TM too.
M_{L} is a $p^{\prime \prime}$-space TM, where $p^{\prime \prime}(n)=\mathrm{O}\left(p(n)+p^{\prime}(n+p(n))\right)$

$\mathbf{P} \subseteq \mathbf{N P} \subseteq P S P A C E \subseteq E X P$

Claim: PSPACE \subseteq EXP

For $L \in$ PSPACE, suppose a p-space TM M_{L} with d states and $|\Gamma|=k$

Number of distinct IDs on an input of size n ?

$$
d \times p(n) \times k^{p(n)} \leq 2^{p^{\prime}(n)}
$$

If M_{L} doesn't halt within that many steps, it must have repeated some ID \Rightarrow in an infinite loop!

An exponential-time TM for L : Simulate M_{L} for $2^{p^{\prime}(n)}$ steps.
If M_{L} has not halted already, halt and reject.

$\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E} \subseteq \mathbf{E X P}$

It is known that $\mathbf{P} \neq \mathbf{E X P}$
(Time-Hierarchy Theorem)
Hence, at least one containment in the chain
$\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E} \subseteq \mathbf{E X P}$ is strict.

All 3 widely believed to be strict

Polynomial-Time Reduction

Suppose f is a reduction from L_{1} to L_{2}
We say f is a polynomial-time reduction if f can be computed by a polynomial-time TM

In that case we write $L_{1} \leq_{\text {poly }} L_{2}$
Positive Implication: If $L_{1} \leq_{\text {poly }} L_{2}$ and $L_{2} \in \mathbf{P}$ then $L_{1} \in \mathbf{P}$
Note: $|f(x)| \leq p(|x|)$ for a polynomial p

NP-Completeness

Consider the language
$\operatorname{ACCEPT}_{N P}=\left\{\left(z, x, m, 1^{t}\right) \mid \exists w \in\{0,1\}^{m}\right.$ s.t.
M_{z} accepts (x, w) within t steps $\}$

$$
\begin{gathered}
A C C E P T_{N P} \in \mathbf{N P} \\
\forall L \in \mathbf{N P}, L \leq_{\text {poly }} A C C E P T_{N P}
\end{gathered}
$$

NP-Completeness

Claim: $A C C E P T_{N P} \in \mathbf{N P}$

$V_{\text {Accept }}=\left\{\left(z, x, m, 1^{t}, w\right) \mid w \in\{0,1\}^{m}\right.$ and
M_{z} accepts (x, w) within t steps \}

Claim: $\forall L \in \mathbf{N P}, L \leq_{\text {poly }} A C C E P T_{N P}$
Let $V \in \boldsymbol{P}$ and polynomial p be s.t.
$L=\left\{x \mid \exists w \in\{0,1\}^{p(x l)}\right.$ s.t. $\left.(x, w) \in V\right\}$
Polynomial-time reduction: $f(x)=\left(z, x, m, 1^{t}\right)$
where z s.t. M_{z} is a p^{\prime}-time TM for $V, m=p(|x|), t=p^{\prime}\left(\left|\left(x, 1^{m}\right)\right|\right)$

NP-Completeness

Consider the language
$A C C E P T_{N P}=\left\{\left(z, x, m, 1^{t}\right) \mid \exists w \in\{0,1\}^{m}\right.$ s.t.
M_{z} accepts (x, w) within t steps $\}$
$A C C E P T_{N P} \in \mathbf{N P}$
$\forall L \in \mathbf{N P}, L \leq_{\text {poly }} A C C E P T_{N P}$

Implication: $A C C E P T_{N P} \in \mathbf{P} \Leftrightarrow \mathbf{N P}=\mathbf{P}$

$$
\begin{gathered}
L \leq_{\text {poly }} L^{\prime} \text { and } L^{\prime} \in \mathbf{P} \\
\Rightarrow L \in \mathbf{P}
\end{gathered}
$$

NP-Completeness

A language A is said to be NP-complete if $A \in \mathbf{N P}$

$$
\forall L \in \mathbf{N P}, L \leq_{\text {poly }} A
$$

Any NP-complete language is one of the hardest NP
languages: if it has a $T(n)$-time algorithm, no NP
language needs more than $p(n)+T(p(n))$ time for some polynomial p (that depends on the language)

> If any $\mathbf{N P}$-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N} \mathbf{P}$

NP-Completeness

$A C C E P T_{N P}$ is an NP-complete language

Next time: Several natural problems are NP-complete languages

More than 50 years of effort into finding efficient algorithms for many of these problems

Now widely believed that such algorithms do not exist

Non-Deterministic TM

Recall that in a TM the finite control is implemented as (essentially) a DFA

Non-Deterministic TM (NTM): Allow the finite control to be an NFA

$$
\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})
$$

From an ID the TM can move to 0 or more IDs by following each possible transition in the set returned by δ

Non-Deterministic TM

As in the case of NFAs, we say an NTM accepts a string if there exists some execution path starting from the initial ID that accepts (even if some others reject)

Non-Deterministic TM

A normal (deterministic) TM can simulate an NTM execution by doing a breadth-first search on the above (implicit) graph

Polynomial-Time NTM

There is a polynomial p s.t., on any input x, every execution thread should finish within $p(|x|)$ steps

Polynomial-Time NTM

Any path in the execution tree can be specified by the sequence of non-deterministic choices: a k-ary string of length $p(n)$ (=depth), where k is $\max |\delta(q, a)|$

NP and NTM

$L \in \mathbf{N P} \Leftrightarrow \exists$ a polynomial-time NTM M s.t. $L(M)=L$

\Rightarrow : Suppose L has certificate language $V \in \mathbf{P}$.
NTM M behaves as follows:

- write down a "certificate" w of the appropriate length, writing 0 or 1 non-deterministically at each step.
- deterministically check if $(x, w) \in V$, and accept if so. M accepts x iff $\exists w$ (of the correct length) s.t. $(x, w) \in V$.
\Leftarrow : Define V s.t. $(x, w) \in V$ iff when M is run with start ID for input x, using w as the string of non-deterministic choices, it accepts.

