
Undecidability

Lecture 21
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Today

Undecidable Problems 

Proving undecidability 

Using reductions to prove more undecidability
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Language of Universal TM 
Language recognized by U: 

L(U) = { (z,w) | U  accepts  (z,w) } 
       = { (z,w) |  Mz  accepts   w }

We will call L(U) = ACCEPT 

Today: 

ACCEPT is undecidable!
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No matter what 
encoding schemes 

are used

Mz is the TM 
encoded by the 

string Mz

pair of binary 
strings encoded as 

a binary string



C
S 

37
4

Cantor’s Diagonal Slash

Is the set of all infinitely long 
binary strings countable? 

Suppose it was: consider 
enumerating them in a table 

Consider the string  
corresponding to the 
“flipped diagonal” 

It doesn’t appear in this 
table!
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Si
S1 = 1 0 0 1 0 0 0 0 1

S2 = 0 0 1 0 1 0 0 1 1

S3 = 1 1 1 1 1 1 1 0 0

S4 = 1 1 0 1 0 1 0 1 1

S5 = 1 1 0 0 0 0 1 0 0

S6 = 0 0 0 0 0 0 1 1 0

S7 = 0 1 0 1 0 1 0 1 1

0 1 0 0 1 1 1 . .
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Undecidability

D = “diagonal language”  
    = { w | Mw accepts w } 

D̅ = { w | Mw doesn’t accept w } 

D̅ does not appear as a row 
in this table. Hence not 
recognizable! 
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w 0 1 00 01 10 11 000 001 010

z
0 1 0 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0 1 1

00 1 1 1 1 1 1 1 0 0

01 1 1 0 1 0 1 0 1 1

10 1 1 0 0 0 0 1 0 0

11 0 0 0 0 0 0 1 1 0

000 0 1 0 1 0 1 0 1 1

Table of languages 
recognized by TMs 

T(z,w) = 1 iff Mz accepts w

0 1 0 0 1 1 1 . .
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R

R.E.
D D̅
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Undecidability
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Table of languages 
recognized by TMs 

T(z,w) = 1 iff Mz accepts w

0 1 0 0 1 1 1 . .

If ACCEPT decidable, can 
compute T(z,w) using a TM that 
halts on every input 

Then D̅ would be decidable too: 
On input w, compute T(w,w) and 
accept iff it is 0 

Hence ACCEPT undecidable!

w 0 1 00 01 10 11 000 001 010

z
0 1 0 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0 1 1

00 1 1 1 1 1 1 1 0 0

01 1 1 0 1 0 1 0 1 1

10 1 1 0 0 0 0 1 0 0

11 0 0 0 0 0 0 1 1 0

000 0 1 0 1 0 1 0 1 1

Entries indicate if 
(z,w) ∈ ACCEPT
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ACCEPT
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Reduction

1. Showed that if ACCEPT is  
decidable, then D̅ decidable 
(using a “reduction” from D̅ to 
ACCEPT ) 

2. We already saw D̅ not 
decidable 

3. Hence ACCEPT not 
decidable
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We just saw how a “reduction” can show impossibility 

w 0 1 00 01 10 11 000 001 010

z
0 1 0 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0 1 1

00 1 1 1 1 1 1 1 0 0

01 1 1 0 1 0 1 0 1 1

10 1 1 0 0 0 0 1 0 0

11 0 0 0 0 0 0 1 1 0

000 0 1 0 1 0 1 0 1 1
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Reduction

The task of solving L1 is reduced to the task of solving L2 

Positive implication:  
If we can solve L2, then we can solve L1 

Negative implication:  
If we can’t solve L1, then we can’t solve L2 
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Reduction from L1 to L2 (L1 ≤ L2): 

Any instance of L1 can be solved by solving an instance of L2 
(and there is an algorithm to change the L1-instance to the L2-instance)
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Reduction
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We use a simple notion of reduction (for most part).  
Algorithm for solving L1 should behave as follows:

A (mapping) reduction from L1 to L2:  
a computable function f s.t.  ∀w, w ∈ L1 ⇔ f(w) ∈ L2

O2

M1

w

f(w) f(w) ∈ L2?
w ∈ L1?

fOn input w, compute f(w)  
Accept iff f(w) ∈ L2

Our “reduction” of D̅ to 
ACCEPT does not fit this. It 

was from D̅ to ACCEPTC
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Reduction
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L1

L2

A (mapping) reduction from L1 to L2:  
a computable function f s.t.  ∀w, w ∈ L1 ⇔ f(w) ∈ L2

Note: a reduction from L1 to L2 
is also a reduction from  L̅1 to L̅2

L1 ≤ L2 ⇔ L̅1 ≤ L̅2
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Reduction
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A (mapping) reduction from L1 to L2:  
a computable function f s.t.  ∀w, w ∈ L1 ⇔ f(w) ∈ L2

O2

M1

w

f(w) f(w) ∈ L2?
w ∈ L1?

fOn input w, compute f(w)  
Accept iff f(w) ∈ L2

Positive implication:  
If L1 ≤ L2 then: can “solve” L2 ⇒  can “solve” L1 

L2 decidable ⇒ L1 decidable 
L2 recognizable ⇒ L1 recognizable

Negative implication: If L1 ≤ L2 then: 
L1 undecidable ⇒ L2 undecidable  

L1 unrecognizable ⇒ L2 unrecognizable
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Halting Problem
HALT = { (z,w) | Mz halts on input  w } 

Claim: ACCEPT ≤ HALT 

f(z,w) = (zʹ,w) where Mzʹ behaves as follows: 

On input x, run Mz on x.  
If Mz halts rejecting x, go into an infinite loop.  
If Mz halts accepting x, halt (and say, accept). 

(zʹ,w) ∈ HALT ⇔ (z,w) ∈ ACCEPT

ACCEPT undecidable ⇒ HALT undecidable14
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HALT



C
S 

37
4

Complement & Undecidability
ACCEPT is undecidable, but is recognizable (why?) 

ACCEPTC is undecidable too (why?) 

Is ACCEPTC recognizable? 

Claim: ACCEPTC is not recognizable 

If not, ACCEPT and ACCEPTC  both recognizable,  
Then ACCEPT would be decidable! (why?)

16

LC stands for L̅
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ACCEPT

HALT HALTC

ACCEPTC
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Empty Language Problem
EMPTY = { z | L(Mz) = Ø  } 

Claim: ACCEPTC  ≤  EMPTY 

f(z,w) = zʹ where Mzʹ behaves as follows: 

On input x, run Mz on w.  
If Mz halts rejecting w, reject x. 

If Mz halts accepting w, accept x. 

zʹ ∈ EMPTY ⇔ (z,w) ∉ ACCEPT 

ACCEPTC unrecognizable ⇒ EMPTY is unrecognizable
18
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R

R.E.
D D̅

ACCEPT

HALT HALTC

ACCEPTC

EMPTY
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Dovetailing
Claim: EMPTYC = { z | L(Mz) ≠ Ø  } is recognizable 

EMPTYC = { z | ∃w Mz accepts w }. 
 Given z, how to check if there is some w that Mz accepts? 

Run Mz  on all w, and if it accepts any, accept (if not keep trying) 

In “parallel”? Can’t run infinitely many executions in parallel! 

Solution: increasingly more 
executions in parallel

20
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Exploring the ID Graph
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ID1(w0)ID0(w0) ID2(w0) ID3(w0) ID4(w0)

ID1(w1)ID0(w1) ID2(w1) ID3(w1) ID4(w1) ID5(w1)

ID1(w2)ID0(w2) ID2(w2) ID3(w2)

Sequential Simulation: Depth first

Goes on forever…

Never gets here!
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Exploring the ID Graph
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ID1(w0)ID0(w0) ID2(w0) ID3(w0) ID4(w0)

ID1(w1)ID0(w1) ID2(w1) ID3(w1) ID4(w1) ID5(w1)

ID1(w2)ID0(w2) ID2(w2) ID3(w2)

Parallel Simulation: Breadth first
Never gets here!

Goes on forever

…
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Dovetailing
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ID1(w0)ID0(w0) ID2(w0) ID3(w0) ID4(w0)

ID1(w1)ID0(w1) ID2(w1) ID3(w1) ID4(w1) ID5(w1)

ID1(w2)ID0(w2) ID2(w2) ID3(w2)

Explore increasingly more executions for 
increasingly more steps

…

Will discover an accepting  
execution if one exists
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R

R.E.
D D̅

ACCEPT

HALT HALTC

ACCEPTC

EMPTYEMPTYC
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Language Equality Problem

Claim: EMPTY ≤ EQUAL 

 
f(z) = (z, zʹ) where Mzʹ rejects all inputs 

(z, zʹ) ∈ EQUAL ⇔ z ∈ EMPTY 

EMPTY unrecognizable ⇒ EQUAL unrecognizable

25

EQUAL = { (z, zʹ) | L(Mz) = L(Mzʹ)  }
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Language Equality Problem

Claim: ACCEPT ≤ EQUAL 

f(z,w) = (z1,z2) where Mz1 & Mz2 behave as follows: 

Mz1 accepts all strings. i.e., L(Mz1) = Σ*  
Mz2 runs Mz on w and if it accepts, accepts its input 

(z1,z2) ∈ EQUAL ⇔ (z,w) ∈ ACCEPT 

Hence EQUAL is not decidable. 

Also, EQUALC is not recognizable. (Why?)
26

ACCEPTC ≤ EQUALC

EQUAL = { (z, zʹ) | L(Mz) = L(Mzʹ)  }
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Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word  

Can one arrange them (using any number of copies of each 
type) so that the top and bottom strings are identical?

28

abb
a

ba
bbb

a
ab

abb
baa

b
bbb

abb
a

ba
bbb

abb
a

a
ab

abb
baa

b
bbb

Theorem [Post’46]: HALT reduces to PostCP  
—  a “combinatorial” problem
PostCP is undecidable.
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PCP PCPC
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Recap
‣ If L1 ≤ L2 then: 

‣ If L1 is undecidable, so is L2
‣ If L1 is unrecognizable, so is L2
‣ L̅1 ≤ L̅2 

‣ L and L̅  recognizable ⇔ L and L̅  decidable ⇔ L decidable 

‣ Corollary: If L recognizable but undecidable, then L̅ not 
recognizable 

‣ e.g., ACCEPTC  is not recognizable 
‣ e.g.: If ACCEPT ≤ L, then L̅  not recognizable (Why?) 
‣ If L is recognizable, then so is Lʹ = { x | ∃w, (x,w) ∈ L } 

(via dovetailing)
30


