Undecidabiliky

Lecture 21

Today

Undecidable Problems

Proving undecidability

Using reductions to prove more undecidability

Language of Universal TM

Language recognized by U :

$$
\begin{aligned}
L(U) & =\{(z, w) \mid U \text { accepts }(z, w)\} \\
& =\left\{(z, w) \mid M_{z} \text { accepts } w\right\}
\end{aligned}
$$

pair of binary We will call $L(U)=A C C E P T$ strings encoded as a binary string

Today:

M_{z} is the TM encoded by the string M_{z}
$A C C E P T$ is undecidable!

No matter what encoding schemes are used

Cantor's Diagonal Slash

$\begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$.

Is the set of all infinitely long binary strings countable?

Suppose it was: consider enumerating them in a table

Consider the string corresponding to the "flipped diagonal"

It doesn't appear in this table!

S_{i}									
$\mathrm{S}_{1}=$		0	0	1	0	0	0	0	1
$\mathrm{S}_{2}=$	0	0		0	1	0	0	1	1
$\mathrm{S}_{3}=$	1		1		1	1	1	0	0
$\mathrm{S}_{4}=$	1	1	0			1	0	1	1
$\mathrm{S}_{5}=$	1	1	0	0	0		1	0	0
$\mathrm{S}_{6}=$	0	0	0	0	0			1	0
$\mathrm{S}_{7}=$	0	1	0	1	0				1

Undecidability

Table of languages recognized by TMs
$T(z, w)=1$ iff M_{z} accepts w
$D=$ "diagonal language"
$=\left\{w \mid M_{w}\right.$ accepts $\left.w\right\}$
$\bar{D}=\left\{w \mid M_{w}\right.$ doesn't accept $\left.w\right\}$
\bar{D} does not appear as a row in this table. Hence not recognizable!

y	w	0	1	00	01	10	11	000	001	010
z	1	0	0	1	0	0	0	0	1	
1	0	0	1	0	1	0	0	1	1	
00	1	1	1	1	1	1	1	0	0	
01	1	1	0	1	0	1	0	1	1	
10	1	1	0	0	0	0	1	0	0	
11	0	0	0	0	0	0	1	1	0	
000	0	1	0	1	0	1	0	1	1	

Map

Undecidability

Table of languages Entries indicate if $(z, w) \in A C C E P T$
$\begin{array}{lllllll}0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$ recognized by TMs
$T(z, w)=1$ iff M_{z} accepts w
If $A C C E P T$ decidable, can compute $T(z, w)$ using a TM that halts on every input

Then \bar{D} would be decidable too: On input w, compute $T(w, w)$ and accept iff it is 0

Hence ACCEPT undecidable!

w z		0	1	00	01	10	11	000	001	010
0	1	0	0	1	0	0	0	0	1	
1	0	0	1	0	1	0	0	1	1	
00	1	1	1	1	1	1	1	0	0	
01	1	1	0	1	0	1	0	1	1	
10	1	1	0	0	0	0	1	0	0	
11	0	0	0	0	0	0	1	1	0	
000	0	1	0	1	0	1	0	1	1	

Map

Reduction

We just saw how a "reduction" can show impossibility

1. Showed that if $A C C E P T$ is decidable, then \bar{D} decidable (using a "reduction" from \bar{D} to ACCEPT)
2. We already saw \bar{D} not decidable
3. Hence ACCEPT not decidable

$z w$	0	1	00	01	10	11	000	001	010
z	1	1	0	1	0	0	0	0	1
0	1	0	0	1	0	0	1		
1	0	0	1	0	1	0	0	1	1
00	1	1	1	1	1	1	1	0	0
01	1	1	0	1	0	1	0	1	1
10	1	1	0	0	0	0	1	0	0
11	0	0	0	0	0	0	1	1	0
000	0	1	0	1	0	1	0	1	1

Reduction

Reduction from L_{1} to $L_{2}\left(L_{1} \leq L_{2}\right)$:

Any instance of L_{1} can be solved by solving an instance of L_{2} (and there is an algorithm to change the L_{1}-instance to the L_{2}-instance)

The task of solving L_{1} is reduced to the task of solving L_{2}
Positive implication:
If we can solve L_{2}, then we can solve L_{1}
Negative implication:
If we can't solve L_{1}, then we can't solve L_{2}

Reduction

Our "reduction" of \bar{D} to ACCEPT does not fit this. It was from \bar{D} to $A C C E P T^{C}$

We use a simple notion of reduction (for most part). Algorithm for solving L_{1} should behave as follows:

On input w, compute $f(w)$ Accept iff $f(w) \in L_{2}$

A (mapping) reduction from L_{1} to L_{2} :
a computable function f s.t. $\forall w, w \in L_{1} \Leftrightarrow f(w) \in L_{2}$

Reduction

A (mapping) reduction from L_{1} to L_{2} : a computable function f s.t. $\forall w, w \in L_{1} \Leftrightarrow f(w) \in L_{2}$

Note: a reduction from L_{1} to L_{2} is also a reduction from \bar{L}_{1} to \bar{L}_{2}

$$
L_{1} \leq L_{2} \Leftrightarrow \bar{L}_{1} \leq \bar{L}_{2}
$$

Reduction

A (mapping) reduction from L_{1} to L_{2} :
a computable function f s.t. $\forall w, w \in L_{1} \Leftrightarrow f(w) \in L_{2}$

On input w, compute $f(w)$ Accept iff $f(w) \in L_{2}$

Positive implication:

If $L_{1} \leq L_{2}$ then: can "solve" $L_{2} \Rightarrow$ can "solve" L_{1}
L_{2} decidable $\Rightarrow L_{1}$ decidable
L_{2} recognizable $\Rightarrow L_{1}$ recognizable
Negative implication: If $L_{1} \leq L_{2}$ then:
L_{1} undecidable $\Rightarrow L_{2}$ undecidable L_{1} unrecognizable $\Rightarrow L_{2}$ unrecognizable

Halting Problem

$$
H A L T=\left\{(z, w) \mid M_{z} \text { halts on input } w\right\}
$$

Claim: $A C C E P T \leq H A L T$
$f(z, w)=\left(z^{\prime}, w\right)$ where $M_{z^{\prime}}$ behaves as follows:
On input x, run M_{z} on x.
If M_{z} halts rejecting x, go into an infinite loop.
If M_{z} halts accepting x, halt (and say, accept).

$$
\left(z^{\prime}, w\right) \in H A L T \Leftrightarrow(z, w) \in A C C E P T
$$

$A C C E P T$ undecidable $\Rightarrow H A L T$ undecidable

Map

Complement \& Undecidability

$A C C E P T$ is undecidable, but is recognizable (why?)
$A C C E P T^{\text {C }}$ is undecidable too (why?)

Claim: $A^{C C E P T C}$ is not recognizable
If not, $A C C E P T$ and $A C C E P T^{C}$ both recognizable, Then ACCEPT would be decidable! (why?)

Map

Empty Language Problem

$$
E M P T Y=\left\{z \mid L\left(M_{z}\right)=\emptyset\right\}
$$

$$
\text { Claim: ACCEPTC }{ }^{\mathrm{C}} \leq E M P T Y
$$

$f(z, w)=z^{\prime}$ where $M_{z^{\prime}}$ behaves as follows:
On input x, run M_{z} on w. If M_{z} halts rejecting w, reject x. If M_{z} halts accepting w , accept x.

$$
z^{\prime} \in E M P T Y \Leftrightarrow(z, w) \notin A C C E P T
$$

$A C C E P T^{\mathrm{C}}$ unrecognizable $\Rightarrow E M P T Y$ is unrecognizable

Map

Dovetailing

Claim: EMPTY $^{\mathrm{C}}=\left\{z \mid L\left(M_{z}\right) \neq \emptyset\right\}$ is recognizable

$$
E M P T Y \mathrm{C}=\left\{z \mid \exists w M_{z} \text { accepts } w\right\} .
$$

Given z, how to check if there is some w that M_{z} accepts?
Run M_{z} on all w, and if it accepts any, accept (if not keep trying) In "parallel"? Can't run infinitely many executions in parallel!

Solution: increasingly more executions in parallel

Exploring the ID Graph

Sequential Simulation: Depth first

Never gets here!

Exploring the ID Graph

Parallel Simulation: Breadth first

- Goes on forever

Dovetailing

Explore increasingly more executions for increasingly more steps

Map

Language Equality Problem

$$
E Q U A L=\left\{\left(z, z^{\prime}\right) \mid L\left(M_{z}\right)=L\left(M_{z^{\prime}}\right)\right\}
$$

Claim: $E M P T Y \leq E Q U A L$

$$
\begin{gathered}
f(z)=\left(z, z^{\prime}\right) \text { where } M_{z^{\prime}} \text { rejects all inputs } \\
\left(z, z^{\prime}\right) \in E Q U A L \Leftrightarrow z \in E M P T Y
\end{gathered}
$$

EMPTY unrecognizable \Rightarrow EQUAL unrecognizable

Language Equality Problem

$$
E Q U A L=\left\{\left(z, z^{\prime}\right) \mid L\left(M_{z}\right)=L\left(M_{z^{\prime}}\right)\right\}
$$

$$
\text { Claim: } A C C E P T \leq E Q U A L\left\{\begin{array}{l}
A C C E P T^{\mathrm{C}} \leq E Q U A L^{C}
\end{array}\right.
$$

$f(z, w)=\left(z_{1}, z_{2}\right)$ where $M z_{1} \& M z_{2}$ behave as follows:
$M z_{1}$ accepts all strings. i.e., $L\left(M z_{1}\right)=\Sigma^{*}$
$M_{z_{2}}$ runs M_{z} on w and if it accepts, accepts its input

$$
\left(z_{1}, z_{2}\right) \in E Q U A L \Leftrightarrow(z, w) \in A C C E P T
$$

Hence EQUAL is not decidable.
Also, EQUAL ${ }^{\text {C }}$ is not recognizable. (Why?)

Map

Post Correspondence Problem

Theorem [Post'46]: HALT reduces to Post $C P$

- a "combinatorial" problem

Post $C P$ is undecidable.

Given: Dominoes, each with a top-word and a bottom-word

\mathbf{b}	$\mathbf{b a}$	$\mathbf{a b b}$	$\mathbf{a b b}$	\mathbf{a}
$\mathbf{b b b}$	$\mathbf{b b b}$	\mathbf{a}	$\mathbf{b a a}$	$\mathbf{a b}$

Can one arrange them (using any number of copies of each type) so that the top and bottom strings are identical?

abb	ba	abb	a	abb	b
\mathbf{a}	bbb	a	ab	baa	bbb

Map

Recap

- If $L_{1} \leq L_{2}$ then:
- If L_{1} is undecidable, so is L_{2}
- If L_{1} is unrecognizable, so is L_{2}
- $\bar{L}_{1} \leq \bar{L}_{2}$
- L and \bar{L} recognizable $\Leftrightarrow L$ and \bar{L} decidable $\Leftrightarrow L$ decidable
- Corollary: If L recognizable but undecidable, then \bar{L} not recognizable
- e.g., $A C C E P T^{\mathrm{C}}$ is not recognizable
- e.g.: If $A C C E P T \leq L$, then \bar{L} not recognizable (Why?)
- If L is recognizable, then so is $L^{\prime}=\{x \mid \exists w,(x, w) \in L\}$ (via dovetailing)

