Undecidability

Lecture 21

Undecidable Problems

Proving undecidability

Using reductions to prove more undecidability

Language of Universal TM

Language recognized by U:

 $L(U) = \{ (z,w) \mid U \text{ accepts } (z,w) \}$ $= \{ (z,w) \mid M_z \text{ accepts } w \}$

pair of binary strings encoded as a binary string

374

S

3

We will call L(U) = ACCEPT

Today:

 M_z is the TM encoded by the string M_z

ACCEPT is undecidable!

No matter what encoding schemes are used

Cantor's Diagonal Slash

Is the set of all infinitely long binary strings countable?

Suppose it was: consider *enumerating* them in a table

Consider the string corresponding to the "flipped diagonal"

Si									
S ₁ =	1	0	0	1	0	0	0	0	1
S ₂ =	0	0	1	0	1	0	0	1	1
S ₃ =	1	1	1	1	1	1	1	0	0
S4 =	1	1	0	1	0	1	0	1	1
S ₅ =	1	1	0	0	0	0	1	0	0
S ₆ =	0	0	0	0	0	0	1	1	0
S ₇ =	0	1	0	1	0	1	0	1	1

 \mathbf{O}

()

374

 \mathcal{O}

Undecidability

Table of languages <u>recognized</u> by TMs

T(z,w) = 1 iff M_z accepts w

D = "diagonal language" $= \{ w \mid M_w \text{ accepts } w \}$

 $\overline{D} = \{ w \mid M_w \text{ doesn't accept } w \}$

 \bar{D} does not appear as a row in this table. Hence not recognizable!

	0	1	0	0	1	1	1	•	•
W Z	0	1	00	01	10	11	000	001	010
0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	1	0	0	1	1
00	1	1	1	1	1	1	1	0	0
01	1	1	0	1	0	1	0	1	1
10	1	1	0	0	0	0	1	0	0
11	0	0	0	0	0	0	1	1	0
000	0	1	0	1	0	1	0	1	1

80 5

Undecidability

Table of languages recognized by TMs

T(z,w) = 1 iff M_z accepts w

If ACCEPT decidable, can compute T(z,w) using a TM that halts on every input

Then \overline{D} would be decidable too: On input w, compute T(w,w) and accept iff it is 0

Hence ACCEPT undecidable!

374

 \mathcal{O}

We just saw how a "reduction" can show impossibility

1. Showed that if ACCEPT is decidable, then \overline{D} decidable (using a *"reduction" from* \overline{D} to ACCEPT)

2. We already saw \bar{D} not decidable

3. Hence *ACCEPT* not decidable

W	0	1	00	01	10	11	000	001	010
z									
0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	1	0	0	1	1
00	1	1	1	1	1	1	1	0	0
01	1	1	0	1	0	1	0	1	1
10	1	1	0	0	0	0	1	0	0
11	0	0	0	0	0	0	1	1	0
000	0	1	0	1	0	1	0	1	1

374

Reduction from L_1 to L_2 ($L_1 \leq L_2$):

Any instance of L_1 can be solved by solving an instance of L_2 (and there is an algorithm to change the L_1 -instance to the L_2 -instance)

The task of solving L_1 is reduced to the task of solving L_2

Positive implication:

If we can solve L_2 , then we can solve L_1

Negative implication:

If we can't solve L_1 , then we can't solve L_2

Our "reduction" of \overline{D} to ACCEPT does not fit this. It was from \overline{D} to ACCEPT^C

We use a simple notion of reduction (for most part). Algorithm for solving L_1 should behave as follows:

On input *w*, compute f(w)Accept iff $f(w) \in L_2$

A (mapping) reduction from L_1 to L_2 : a computable function f s.t. $\forall w, w \in L_1 \Leftrightarrow f(w) \in L_2$

A (mapping) reduction from L_1 to L_2 : a computable function f s.t. $\forall w, w \in L_1 \Leftrightarrow f(w) \in L_2$

Note: a reduction from L_1 to L_2 is also a reduction from \overline{L}_1 to \overline{L}_2

 $L_1 \leq L_2 \Leftrightarrow \overline{L}_1 \leq \overline{L}_2$

A (mapping) reduction from L_1 to L_2 : a computable function f s.t. $\forall w, w \in L_1 \Leftrightarrow f(w) \in L_2$

On input *w*, compute f(w)Accept iff $f(w) \in L_2$

Positive implication: M_1

If $L_1 \leq L_2$ then: can "solve" $L_2 \Rightarrow$ can "solve" L_1

 L_2 decidable $\Rightarrow L_1$ decidable L_2 recognizable $\Rightarrow L_1$ recognizable

Negative implication: If $L_1 \le L_2$ then: L_1 undecidable $\Rightarrow L_2$ undecidable L_1 unrecognizable $\Rightarrow L_2$ unrecognizable

Halting Problem

 $HALT = \{ (z,w) | M_z \text{ halts on input } w \}$

Claim: $ACCEPT \leq HALT$

f(z,w) = (z',w) where $M_{z'}$ behaves as follows:

On input *x*, run M_z on *x*. If M_z halts rejecting *x*, go into an infinite loop. If M_z halts accepting *x*, halt (and say, accept).

 $(z',w) \in HALT \Leftrightarrow (z,w) \in ACCEPT$

ACCEPT undecidable \Rightarrow HALT undecidable

Complement & Undecidability

ACCEPT is undecidable, but is recognizable (why?)

ACCEPT^C is undecidable too (why?)

 L^{C} stands for \overline{L}

Is *ACCEPT*^C recognizable?

Claim: ACCEPT^C is not recognizable

If not, ACCEPT and ACCEPT^C both recognizable, Then ACCEPT would be decidable! (why?)

Empty Language Problem

$EMPTY = \{ z \mid L(M_z) = \emptyset \}$

Claim: $ACCEPT^C \leq EMPTY$

f(z,w) = z' where $M_{z'}$ behaves as follows:

On input *x*, run *M_z* on *w*. If *M_z* halts rejecting *w*, reject *x*. If *M_z* halts accepting w, accept *x*.

 $z' \in EMPTY \Leftrightarrow (z,w) \notin ACCEPT$

 $ACCEPT^{C}$ unrecognizable $\Rightarrow EMPTY$ is unrecognizable

Dovetailing

Claim: $EMPTY^{C} = \{ z \mid L(M_z) \neq \emptyset \}$ is recognizable

 $EMPTY^{C} = \{ z \mid \exists w M_{z} \text{ accepts } w \}.$ Given *z*, how to check if there is some *w* that *M_z* accepts?

Run M_z on all w, and if it accepts any, accept (if not keep trying)

In "parallel"? Can't run infinitely many executions in parallel!

Solution: increasingly more executions in parallel

374

Exploring the ID Graph

Sequential Simulation: Depth first

$$\begin{array}{c} \hline D_{0}(w_{0}) & \rightarrow & \boxed{D_{1}(w_{0})} & \rightarrow & \boxed{D_{2}(w_{0})} & \rightarrow & \boxed{D_{3}(w_{0})} & \rightarrow & \boxed{D_{4}(w_{0})} \\ \hline \hline D_{0}(w_{1}) & \rightarrow & \boxed{D_{1}(w_{1})} & \rightarrow & \boxed{D_{2}(w_{1})} & \rightarrow & \boxed{D_{3}(w_{1})} & \rightarrow & \boxed{D_{4}(w_{1})} & \rightarrow & \boxed{D_{5}(w_{1})} & \rightarrow$$

SS 374

Exploring the ID Graph

Dovetailing

Explore increasingly more executions for increasingly more steps

Language Equality Problem

$EQUAL = \{ (z, z') | L(M_z) = L(M_{z'}) \}$

Claim: *EMPTY* ≤ *EQUAL*

f(z) = (z, z') where $M_{z'}$ rejects all inputs

 $(z, z') \in EQUAL \Leftrightarrow z \in EMPTY$

EMPTY unrecognizable \Rightarrow *EQUAL* unrecognizable

Language Equality Problem

 $EQUAL = \{ (z, z') \mid L(M_z) = L(M_{z'}) \}$

Claim: ACCEPT ≤ EQUAL ACCEPT^C ≤ EQUAL^C

 $f(z,w) = (z_1,z_2)$ where $M_{z_1} \& M_{z_2}$ behave as follows:

 M_{z_1} accepts all strings. i.e., $L(M_{z_1}) = \Sigma^*$ M_{z_2} runs M_z on w and if it accepts, accepts its input

 $(z_1, z_2) \in EQUAL \Leftrightarrow (z, w) \in ACCEPT$

Hence EQUAL is not decidable.

Also, *EQUAL*^C is not recognizable. (Why?)

374

S

Post Correspondence Problem

<u>Theorem</u> [Post'46]: *HALT* reduces to *PostCP*

— a "combinatorial" problem

PostCP is undecidable.

Given: Dominoes, each with a top-word and a bottom-word

Ъ	ba	abb	abb	a
bbb	bbb	a	baa	ab

Can one arrange them (using <u>any number of copies of each</u> <u>type</u>) so that the top and bottom strings are identical?

abb	ba	abb	a	abb	Ъ
a	bbb	a	ab	baa	bbb

Recap

- If $L_1 \leq L_2$ then:
 - If L_1 is undecidable, so is L_2
 - If L_1 is unrecognizable, so is L_2
 - $\overline{L}_1 \leq \overline{L}_2$
- L and \overline{L} recognizable \Leftrightarrow L and \overline{L} decidable \Leftrightarrow L decidable
 - Corollary: If L recognizable but undecidable, then \overline{L} not recognizable
 - e.g., *ACCEPT*^C is not recognizable
- e.g.: If $ACCEPT \leq L$, then \overline{L} not recognizable (Why?)
- If L is recognizable, then so is $L' = \{ x | \exists w, (x,w) \in L \}$ (via dovetailing)

374

S