
CS 374: Algorithms & Models of Computation,

Fall 2015

Kartsuba’s Algorithm and
Linear Time Selection
Lecture 09
September 22, 2015

Chandra & Manoj (UIUC) CS374 1 Fall 2015 1 / 32

Part I

Fast Multiplication

Chandra & Manoj (UIUC) CS374 2 Fall 2015 2 / 32

Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 32

Time Analysis of Grade School Multiplication

1 Each partial product: Θ(n)

2 Number of partial products: Θ(n)

3 Addition of partial products: Θ(n2)

4 Total time: Θ(n2)

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 32

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac− bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d)− ac− bd

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 32

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac− bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d)− ac− bd

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 32

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac− bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d)− ac− bd

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 32

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

1 x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0

2 x = xn−1 . . . xn/20 . . . 0 + xn/2−1 . . . x0

3 xL = 10n/2xL where xL = xn−1 . . . xn/2 and xR = xn/2−1 . . . x0

4 Similarly y = 10n/2yL + yR where yL = yn−1 . . . yn/2 and
yR = yn/2−1 . . . y0

Chandra & Manoj (UIUC) CS374 6 Fall 2015 6 / 32

Example

1234× 5678 = (100× 12 + 34)× (100× 56 + 78)

= 10000× 12× 56

+100× (12× 78 + 34× 56)

+34× 78

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 32

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

1 x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0

2 x = 10n/2xL + xR where xL = xn−1 . . . xn/2 and
xR = xn/2−1 . . . x0

3 y = 10n/2yL + yR where yL = yn−1 . . . yn/2 and
yR = yn/2−1 . . . y0

Therefore

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 32

Time Analysis

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

T(n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 32

Time Analysis

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

T(n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 32

Time Analysis

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

T(n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 32

Time Analysis

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

T(n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 32

Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means T(n) = O(nlog2 3) = O(n1.585)

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 32

Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means T(n) = O(nlog2 3) = O(n1.585)

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 32

Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means

T(n) = O(nlog2 3) = O(n1.585)

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 32

Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means T(n) = O(nlog2 3) = O(n1.585)

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 32

State of the Art

Schönhage-Strassen 1971: O(n log n log log n) time using
Fast-Fourier-Transform (FFT)

Martin Fürer 2007: O(n log n2O(log∗ n)) time

Conjecture

There is an O(n log n) time algorithm.

Chandra & Manoj (UIUC) CS374 11 Fall 2015 11 / 32

Analyzing the Recurrences

1 Basic divide and conquer: T(n) = 4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = Θ(n2).

2 Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1.
Claim: T(n) = Θ(n1+log 1.5)

Use recursion tree method:

1 In both cases, depth of recursion L = log n.

2 Work at depth i is 4in/2i and 3in/2i respectively: number of
children at depth i times the work at each child

3 Total work is therefore n
∑L

i=0 2i and n
∑L

i=0(3/2)i respectively.

Chandra & Manoj (UIUC) CS374 12 Fall 2015 12 / 32

Analyzing the Recurrences

1 Basic divide and conquer: T(n) = 4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = Θ(n2).

2 Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1.
Claim: T(n) = Θ(n1+log 1.5)

Use recursion tree method:

1 In both cases, depth of recursion L = log n.

2 Work at depth i is 4in/2i and 3in/2i respectively: number of
children at depth i times the work at each child

3 Total work is therefore n
∑L

i=0 2i and n
∑L

i=0(3/2)i respectively.

Chandra & Manoj (UIUC) CS374 12 Fall 2015 12 / 32

Recursion tree analysis

Chandra & Manoj (UIUC) CS374 13 Fall 2015 13 / 32

Part II

Selecting in Unsorted Lists

Chandra & Manoj (UIUC) CS374 14 Fall 2015 14 / 32

Rank of element in an array

A: an unsorted array of n integers

Definition
For 1 ≤ j ≤ n, element of rank j is the j’th smallest element in A.

16 1214 20 534 3 19 11

1612 14 205 343 1911

12 3456 789

Unsorted array

Ranks

Sort of array

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 32

Problem - Selection

Input Unsorted array A of n integers and integer j

Goal Find the jth smallest number in A (rank j number)

Median: j = b(n + 1)/2c

Simplifying assumption for sake of notation: elements of A are
distinct

Chandra & Manoj (UIUC) CS374 16 Fall 2015 16 / 32

Problem - Selection

Input Unsorted array A of n integers and integer j

Goal Find the jth smallest number in A (rank j number)

Median: j = b(n + 1)/2c

Simplifying assumption for sake of notation: elements of A are
distinct

Chandra & Manoj (UIUC) CS374 16 Fall 2015 16 / 32

Algorithm I

1 Sort the elements in A

2 Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 32

Algorithm I

1 Sort the elements in A

2 Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 32

Algorithm II

If j is small or n− j is small then

1 Find j smallest/largest elements in A in O(jn) time. (How?)

2 Time to find median is O(n2).

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 / 32

Divide and Conquer Approach

1 Pick a pivot element a from A

2 Partition A based on a.
Aless = {x ∈ A | x ≤ a} and Agreater = {x ∈ A | x > a}

3 |Aless| = j: return a

4 |Aless| > j: recursively find jth smallest element in Aless

5 |Aless| < j: recursively find kth smallest element in Agreater

where k = j− |Aless|.

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 / 32

Example

16 1214 20 534 3 19 11

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 32

Time Analysis

1 Partitioning step: O(n) time to scan A

2 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 32

Time Analysis

1 Partitioning step: O(n) time to scan A

2 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 32

Time Analysis

1 Partitioning step: O(n) time to scan A

2 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 32

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 32

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 32

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot?

Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 32

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly?

In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 32

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 32

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 32

Divide and Conquer Approach
A game of medians

Idea
1 Break input A into many subarrays: L1, . . . Lk.

2 Find median mi in each subarray Li.

3 Find the median x of the medians m1, . . . , mk.

4 Intuition: The median x should be close to being a good median
of all the numbers in A.

5 Use x as pivot in previous algorithm.

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 32

Example

11 7 3 42 174 310 1 92 87 12 19 15

Chandra & Manoj (UIUC) CS374 24 Fall 2015 24 / 32

Choosing the pivot
A clash of medians

1 Partition array A into dn/5e lists of 5 items each.
L1 = {A[1], A[2], . . . , A[5]}, L2 = {A[6], . . . , A[10]}, . . .,
Li = {A[5i + 1], . . . , A[5i− 4]}, . . .,
Ldn/5e = {A[5dn/5e − 4, . . . , A[n]}.

2 For each i find median bi of Li using brute-force in O(1) time.
Total O(n) time

3 Let B = {b1, b2, . . . , bdn/5e}
4 Find median b of B

Lemma
Median of B is an approximate median of A. That is, if b is used a
pivot to partition A, then |Aless| ≤ 7n/10 + 6 and
|Agreater| ≤ 7n/10 + 6.

Chandra & Manoj (UIUC) CS374 25 Fall 2015 25 / 32

Choosing the pivot
A clash of medians

1 Partition array A into dn/5e lists of 5 items each.
L1 = {A[1], A[2], . . . , A[5]}, L2 = {A[6], . . . , A[10]}, . . .,
Li = {A[5i + 1], . . . , A[5i− 4]}, . . .,
Ldn/5e = {A[5dn/5e − 4, . . . , A[n]}.

2 For each i find median bi of Li using brute-force in O(1) time.
Total O(n) time

3 Let B = {b1, b2, . . . , bdn/5e}
4 Find median b of B

Lemma
Median of B is an approximate median of A. That is, if b is used a
pivot to partition A, then |Aless| ≤ 7n/10 + 6 and
|Agreater| ≤ 7n/10 + 6.

Chandra & Manoj (UIUC) CS374 25 Fall 2015 25 / 32

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B?

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 32

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B?

Recursively!

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 32

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B? Recursively!

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 32

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

B = [b1, b2, . . . , bdn/5e]
b = select(B, dn/10e)
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 32

Running time of deterministic median selection
A dance with recurrences

T(n) = T(dn/5e) + max{T(|Aless|), T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(n) = O(1) n < 10

Exercise: show that T(n) = O(n)

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 32

Running time of deterministic median selection
A dance with recurrences

T(n) = T(dn/5e) + max{T(|Aless|), T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(n) = O(1) n < 10

Exercise: show that T(n) = O(n)

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 32

Running time of deterministic median selection
A dance with recurrences

T(n) = T(dn/5e) + max{T(|Aless|), T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(n) = O(1) n < 10

Exercise: show that T(n) = O(n)

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 32

Median of Medians: Proof of Lemma

Figure : Shaded elements are all
greater than b

Proposition

There are at least 3n/10− 6
elements greater than the median of
medians b.

Proof.
At least half of the dn/5e groups
have at least 3 elements larger than
b, except for last group and the
group containing b. Hence number
of elements greater than b is:

3(d(1/2)dn/5ee−2) ≥ 3n/10−6

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 32

Median of Medians: Proof of Lemma

Figure : Shaded elements are all
greater than b

Proposition

There are at least 3n/10− 6
elements greater than the median of
medians b.

Proof.
At least half of the dn/5e groups
have at least 3 elements larger than
b, except for last group and the
group containing b. Hence number
of elements greater than b is:

3(d(1/2)dn/5ee−2) ≥ 3n/10−6

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 32

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10− 6 elements greater than the median of
medians b.

Corollary

|Aless| ≤ 7n/10 + 6.

Via symmetric argument,

Corollary

|Agreater| ≤ 7n/10 + 6.

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 32

Questions to ponder

1 Why did we choose lists of size 5? Will lists of size 3 work?

2 Write a recurrence to analyze the algorithm’s running time if we
choose a list of size k.

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 32

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 32

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?

All except Vaughn Pratt!

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 32

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 32

Takeaway Points

1 Recursion tree method and guess and verify are the most reliable
methods to analyze recursions in algorithms.

2 Recursive algorithms naturally lead to recurrences.

3 Some times one can look for certain type of recursive algorithms
(reverse engineering) by understanding recurrences and their
behavior.

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 / 32

	Fast Multiplication
	The Problem
	Algorithmic Solution
	Grade School Multiplication
	Divide and Conquer Solution
	Karatsuba's Algorithm

	Selecting in Unsorted Lists
	Selection
	Naïve Algorithm
	Divide and Conquer
	Median of Medians

