CS 374: Algorithms \& Models of Computation,

 Fall 2015
Kartsuba's Algorithm and Linear Time Selection

Lecture 09
September 22, 2015

Part I

Fast Multiplication

Multiplying Numbers

Problem Given two \mathbf{n}-digit numbers \mathbf{x} and \mathbf{y}, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of \mathbf{y} with \mathbf{x} and adding the partial products.

$$
\begin{gathered}
3141 \\
\times 2718 \\
\hline 25128 \\
3141 \\
21987 \\
\hline 6282 \\
\hline 8537238
\end{gathered}
$$

Time Analysis of Grade School Multiplication

(1) Each partial product: $\boldsymbol{\Theta}(\mathbf{n})$
(2) Number of partial products: $\boldsymbol{\Theta}(\mathbf{n})$
(3) Addition of partial products: $\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$

- Total time: $\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: $\mathbf{(a + b i})$ and $(\mathbf{c}+\mathbf{d i})$

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: $\mathbf{(a + b i})$ and $(\mathbf{c}+\mathbf{d i})$

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

How many multiplications do we need?

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: $\mathbf{(a + b i})$ and $(\mathbf{c}+\mathbf{d i})$

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute $\mathbf{a c}, \mathbf{b d},(\mathbf{a}+\mathbf{b})(\mathbf{c}+\mathbf{d})$. Then $(a d+b c)=(a+b)(c+d)-a c-b d$

Divide and Conquer

Assume \mathbf{n} is a power of $\mathbf{2}$ for simplicity and numbers are in decimal.
Split each number into two numbers with equal number of digits
(1) $x=x_{n-1} x_{n-2} \ldots x_{0}$ and $y=y_{n-1} y_{n-2} \ldots y_{0}$
(2) $x=x_{n-1} \ldots x_{n / 2} 0 \ldots 0+x_{n / 2-1} \ldots x_{0}$
(3) $x_{L}=10^{n / 2} x_{L}$ where $x_{L}=x_{n-1} \ldots x_{n / 2}$ and $x_{R}=x_{n / 2-1} \ldots x_{0}$
(1) Similarly $\mathbf{y}=10^{n / 2} \mathbf{y}_{\mathrm{L}}+\mathrm{y}_{\mathrm{R}}$ where $\mathrm{y}_{\mathrm{L}}=\mathrm{y}_{\mathrm{n}-1} \ldots \mathrm{y}_{\mathrm{n} / 2}$ and $y_{R}=y_{n / 2-1} \cdots y_{0}$

Example

$$
\begin{aligned}
1234 \times 5678= & (100 \times 12+34) \times(100 \times 56+78) \\
= & 10000 \times 12 \times 56 \\
& +100 \times(12 \times 78+34 \times 56) \\
& +34 \times 78
\end{aligned}
$$

Divide and Conquer

Assume \mathbf{n} is a power of $\mathbf{2}$ for simplicity and numbers are in decimal.
(1) $x=x_{n-1} x_{n-2} \ldots x_{0}$ and $y=y_{n-1} y_{n-2} \ldots y_{0}$
(2) $x=10^{n / 2} x_{L}+x_{R}$ where $x_{L}=x_{n-1} \ldots x_{n / 2}$ and $x_{R}=x_{n / 2-1} \ldots x_{0}$
(3) $y=10^{n / 2} y_{L}+y_{R}$ where $y_{L}=y_{n-1} \ldots y_{n / 2}$ and $y_{R}=y_{n / 2-1} \cdots y_{0}$
Therefore

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

$T(n)=4 T\left(\frac{n}{2}\right)+6 n T(4)=1$

Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of number of size $\mathbf{n} / \mathbf{2}$ each plus 4 additions and left shifts (adding enough 0's to the right)

Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of number of size $\mathbf{n} / \mathbf{2}$ each plus 4 additions and left shifts (adding enough 0's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of number of size $\mathbf{n} / \mathbf{2}$ each plus 4 additions and left shifts (adding enough 0's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

$\mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$. No better than grade school multiplication!

Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of number of size $\mathbf{n} / \mathbf{2}$ each plus 4 additions and left shifts (adding enough 0's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

$\mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\mathbf{n}^{2}\right)$. No better than grade school multiplication!
Can we invoke Gauss's trick here?

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$

$$
T(n)=3 T\left(\frac{n}{2}\right)+n
$$

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $\mathrm{x}_{\mathrm{L}} \mathrm{y}_{\mathrm{R}}+\mathrm{x}_{\mathrm{R}} \mathrm{y}_{\mathrm{L}}=\left(\mathrm{x}_{\mathrm{L}}+\mathrm{x}_{\mathrm{R}}\right)\left(\mathrm{y}_{\mathrm{L}}+\mathrm{y}_{\mathrm{R}}\right)-\mathrm{x}_{\mathrm{L}} \mathrm{y}_{\mathrm{L}}-\mathrm{x}_{\mathrm{R}} \mathrm{y}_{\mathrm{R}}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Time Analysis

Running time is given by

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=O(1)
$$

which means

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Time Analysis

Running time is given by

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=O(1)
$$

which means $\mathbf{T}(\mathbf{n})=\mathbf{O}\left(\mathbf{n}^{\log _{2} 3}\right)=\mathbf{O}\left(\mathbf{n}^{1.585}\right)$

State of the Art

Schönhage-Strassen 1971: O($\mathbf{n} \boldsymbol{\operatorname { l o g }} \mathbf{n} \log \log \mathbf{n})$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: $\mathbf{O}\left(\mathbf{n} \log \mathbf{n} \mathbf{2}^{\mathbf{O}\left(\log ^{*} \mathrm{n}\right)}\right)$ time

Conjecture

There is an $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ time algorithm.

Analyzing the Recurrences

(1) Basic divide and conquer: $T(n)=4 T(n / 2)+O(n)$, $\mathrm{T}(1)=1$. Claim: $\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{2}\right)$.
(2) Saving a multiplication: $T(n)=3 T(n / 2)+O(n), T(1)=1$. Claim: $T(n)=\Theta\left(n^{1+\log 1.5}\right)$

Analyzing the Recurrences

(1) Basic divide and conquer: $T(n)=4 T(n / 2)+O(n)$, $T(1)=1$. Claim: $T(n)=\Theta\left(n^{2}\right)$.
(2) Saving a multiplication: $T(n)=3 T(n / 2)+O(n), T(1)=1$. Claim: $\mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\mathbf{n}^{1+\log 1.5}\right)$

Use recursion tree method:
(1) In both cases, depth of recursion $\mathrm{L}=\log \mathbf{n}$.
(2) Work at depth \mathbf{i} is $4^{\mathbf{i}} \mathbf{n} / \mathbf{2}^{\mathbf{i}}$ and $3^{\mathbf{i}} \mathbf{n} / \mathbf{2}^{\mathbf{i}}$ respectively: number of children at depth \mathbf{i} times the work at each child
(3) Total work is therefore $\mathbf{n} \sum_{i=0}^{\mathrm{L}} 2^{\mathbf{i}}$ and $\mathbf{n} \sum_{i=0}^{\mathrm{L}}(\mathbf{3} / \mathbf{2})^{\mathrm{i}}$ respectively.

Recursion tree analysis

Part II

Selecting in Unsorted Lists

Rank of element in an array

A: an unsorted array of \mathbf{n} integers

Definition

For $\mathbf{1} \leq \mathbf{j} \leq \mathbf{n}$, element of rank \mathbf{j} is the \mathbf{j} 'th smallest element in \mathbf{A}.

Unsorted array | 16 | 14 | 34 | 20 | 12 | 5 | 3 | 19 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6	5	9	8	4	2	1	7	3

Sort of array | 3 | 5 | 11 | 12 | 14 | 16 | 19 | 20 | 34 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Problem - Selection

Input Unsorted array \mathbf{A} of \mathbf{n} integers and integer \mathbf{j}
 Goal Find the \mathbf{j} th smallest number in \mathbf{A} (rank \mathbf{j} number)

Median: $\mathbf{j}=\lfloor(\mathbf{n}+\mathbf{1}) / \mathbf{2}\rfloor$

Problem - Selection

Input Unsorted array \mathbf{A} of \mathbf{n} integers and integer \mathbf{j}
 Goal Find the $\mathbf{j} t h$ smallest number in \mathbf{A} (rank \mathbf{j} number)

Median: $\mathbf{j}=\lfloor(\mathbf{n}+\mathbf{1}) / \mathbf{2}\rfloor$
Simplifying assumption for sake of notation: elements of \mathbf{A} are distinct

Algorithm I

(1) Sort the elements in \mathbf{A}
(2) Pick jth element in sorted order

Time taken $=\mathbf{O}(\mathbf{n} \log \mathbf{n})$

Algorithm I

(1) Sort the elements in \mathbf{A}
(2) Pick jth element in sorted order

Time taken $=\mathbf{O}(\mathbf{n} \log \mathbf{n})$
Do we need to sort? Is there an $\mathbf{O}(\mathbf{n})$ time algorithm?

Algorithm II

If \mathbf{j} is small or $\mathbf{n}-\mathbf{j}$ is small then
(1) Find \mathbf{j} smallest/largest elements in \mathbf{A} in $\mathbf{O}(\mathbf{j n})$ time. (How?)
(2) Time to find median is $\mathbf{O}\left(\mathbf{n}^{2}\right)$.

Divide and Conquer Approach

(1) Pick a pivot element a from \mathbf{A}
(2) Partition \mathbf{A} based on a.
$\mathbf{A}_{\text {less }}=\{x \in \mathbf{A} \mid x \leq a\}$ and $\mathbf{A}_{\text {greater }}=\{x \in \mathbf{A} \mid x>a\}$
(- $\left|\mathbf{A}_{\text {less }}\right|=\mathbf{j}$: return a
(1) $\left|\mathbf{A}_{\text {less }}\right|>\mathbf{j}$: recursively find \mathbf{j} th smallest element in $\mathbf{A}_{\text {less }}$

- $\left|\mathbf{A}_{\text {less }}\right|<\mathbf{j}$: recursively find \mathbf{k} th smallest element in $\mathbf{A}_{\text {greater }}$ where $\mathbf{k}=\mathbf{j}-\left|\mathbf{A}_{\text {less }}\right|$.

Example

16	14	34	20	12	5	3	19	11

$$
j=8
$$

Time Analysis

(1) Partitioning step: $\mathbf{O}(\mathbf{n})$ time to scan \mathbf{A}
(2) How do we choose pivot? Recursive running time?

Time Analysis

(1) Partitioning step: $\mathbf{O}(\mathbf{n})$ time to scan \mathbf{A}
(2) How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $\mathbf{A}[1]$.

Time Analysis

(1) Partitioning step: $\mathbf{O}(\mathbf{n})$ time to scan \mathbf{A}
(2) How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $\mathbf{A}[1]$.
Say \mathbf{A} is sorted in increasing order and $\mathbf{j}=\mathbf{n}$.
Exercise: show that algorithm takes $\Omega\left(\mathbf{n}^{2}\right)$ time

Suppose pivot is the ℓ th smallest element where $\mathbf{n} / \mathbf{4} \leq \ell \leq \mathbf{3 n} / \mathbf{4}$. That is pivot is approximately in the middle of \mathbf{A} Then $\mathbf{n} / 4 \leq\left|\mathbf{A}_{\text {less }}\right| \leq \mathbf{3 n} / 4$ and $\mathbf{n} / 4 \leq\left|\mathbf{A}_{\text {greater }}\right| \leq \mathbf{3 n} / 4$. If we apply recursion,

$$
T(n) \leq n+T\left(\frac{3 n}{n}\right)
$$

A Better Pivot

Suppose pivot is the ℓ th smallest element where $\mathbf{n} / \mathbf{4} \leq \ell \leq \mathbf{3 n} / \mathbf{4}$. That is pivot is approximately in the middle of \mathbf{A} Then $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {less }}\right| \leq \mathbf{3 n} / \mathbf{4}$ and $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{n})$!

A Better Pivot

Suppose pivot is the ℓ th smallest element where $\mathbf{n} / \mathbf{4} \leq \ell \leq \mathbf{3 n} / \mathbf{4}$. That is pivot is approximately in the middle of \mathbf{A} Then $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {less }}\right| \leq \mathbf{3 n} / \mathbf{4}$ and $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{n})$!
How do we find such a pivot?

A Better Pivot

Suppose pivot is the ℓ th smallest element where $\mathbf{n} / \mathbf{4} \leq \ell \leq \mathbf{3 n} / \mathbf{4}$. That is pivot is approximately in the middle of \mathbf{A} Then $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {less }}\right| \leq \mathbf{3 n} / \mathbf{4}$ and $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{n})$!
How do we find such a pivot? Randomly?

A Better Pivot

Suppose pivot is the ℓ th smallest element where $\mathbf{n} / \mathbf{4} \leq \ell \leq \mathbf{3 n} / \mathbf{4}$. That is pivot is approximately in the middle of \mathbf{A} Then $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {less }}\right| \leq \mathbf{3 n} / \mathbf{4}$ and $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{n})$!
How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

A Better Pivot

Suppose pivot is the ℓ th smallest element where $\mathbf{n} / \mathbf{4} \leq \ell \leq \mathbf{3 n} / \mathbf{4}$.
That is pivot is approximately in the middle of \mathbf{A}
Then $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {less }}\right| \leq \mathbf{3 n} / \mathbf{4}$ and $\mathbf{n} / \mathbf{4} \leq\left|\mathbf{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{n})$!
How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?

Divide and Conquer Approach

A game of medians

Idea

(1) Break input \mathbf{A} into many subarrays: $\mathbf{L}_{1}, \ldots \mathbf{L}_{\mathbf{k}}$.
(2) Find median $\mathbf{m}_{\mathbf{i}}$ in each subarray $\mathbf{L}_{\mathbf{i}}$.
(3) Find the median \mathbf{x} of the medians $\mathbf{m}_{1}, \ldots, \mathbf{m}_{\mathbf{k}}$.
(4) Intuition: The median x should be close to being a good median of all the numbers in \mathbf{A}.
(5) Use \mathbf{x} as pivot in previous algorithm.

Example

15

Choosing the pivot

A clash of medians
(1) Partition array \mathbf{A} into $\lceil\mathbf{n} / 5\rceil$ lists of 5 items each.

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{A}[1], \mathrm{A}[2], \ldots, \mathrm{A}[5]\}, \mathrm{L}_{2}=\{\mathrm{A}[6], \ldots, \mathrm{A}[10]\}, \ldots, \\
& \mathrm{L}_{\mathrm{i}}=\{\mathrm{A}[5 \mathrm{Si}+1], \ldots, \mathrm{A}[5 \mathrm{i}-4]\}, \ldots \\
& \mathrm{L}_{\lceil\mathrm{n} / 5\rceil}=\{\mathrm{A}[5\lceil\mathrm{n} / 5\rceil-4, \ldots, \mathrm{~A}[\mathrm{n}]\} .
\end{aligned}
$$

(2) For each \mathbf{i} find median $\mathbf{b}_{\mathbf{i}}$ of $\mathbf{L}_{\mathbf{i}}$ using brute-force in $\mathbf{O}(\mathbf{1})$ time. Total $\mathbf{O}(\mathbf{n})$ time
(3) Let $B=\left\{b_{1}, b_{2}, \ldots, b_{\lceil n / 5\rceil}\right\}$
(4) Find median \mathbf{b} of \mathbf{B}

Choosing the pivot

A clash of medians

(1) Partition array \mathbf{A} into $\lceil\mathbf{n} / 5\rceil$ lists of 5 items each.

$$
\begin{aligned}
& L_{1}=\{A[1], A[2], \ldots, A[5]\}, L_{2}=\{A[6], \ldots, A[10]\}, \ldots, \\
& L_{i}=\{A[5 i+1], \ldots, A[5 i-4]\}, \ldots \\
& L_{\lceil n / 5\rceil}=\{A[5\lceil n / 5\rceil-4, \ldots, A[n]\} .
\end{aligned}
$$

(2) For each \mathbf{i} find median $\mathbf{b}_{\mathbf{i}}$ of $\mathbf{L}_{\mathbf{i}}$ using brute-force in $\mathbf{O}(\mathbf{1})$ time. Total $\mathbf{O}(\mathbf{n})$ time
(3) Let $B=\left\{b_{1}, b_{2}, \ldots, b_{\lceil n / 5\rceil}\right\}$
(4) Find median \mathbf{b} of \mathbf{B}

Lemma

Median of \mathbf{B} is an approximate median of \mathbf{A}. That is, if \mathbf{b} is used a pivot to partition \mathbf{A}, then $\left|\mathbf{A}_{\text {less }}\right| \leq \mathbf{7 n} / \mathbf{1 0}+\mathbf{6}$ and $\left|\mathbf{A}_{\text {greater }}\right| \leq \mathbf{7 n} / 10+6$.

Algorithm for Selection

A storm of medians

$\operatorname{select}(\mathbf{A}, \mathbf{j})$:
Form lists $\mathbf{L}_{1}, \mathbf{L}_{2}, \ldots, \mathbf{L}_{\lceil\mathrm{n} / 5\rceil}$ where $\mathbf{L}_{\mathbf{i}}=\{\mathbf{A}[5 \mathbf{i}-4], \ldots, \mathbf{A}[5 i]\}$
Find median $\mathbf{b}_{\mathbf{i}}$ of each $\mathbf{L}_{\mathbf{i}}$ using brute-force
Find median \mathbf{b} of $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\lceil\mathbf{n} / 5\rceil}\right\}$
Partition \mathbf{A} into $\mathbf{A}_{\text {less }}$ and $\mathbf{A}_{\text {greater }}$ using \mathbf{b} as pivot
if $\left(\left|\mathbf{A}_{\text {less }}\right|\right)=\mathbf{j}$ return \mathbf{b}
else if $\left.\left(\left|\mathbf{A}_{\text {less }}\right|\right)>\mathbf{j}\right)$
return select ($\mathbf{A}_{\text {less }}, \mathbf{j}$)
else
return select $\left(\mathbf{A}_{\text {greater }}, \mathbf{j}-\left|\mathbf{A}_{\text {less }}\right|\right)$

Algorithm for Selection

A storm of medians

```
select(A, j) :
    Form lists }\mp@subsup{L}{1}{},\mp@subsup{L}{2}{},\ldots,\mp@subsup{L}{\lceiln/5\rceil}{}\mathrm{ where }\mp@subsup{L}{i}{}={\mathbf{A}[5i-4],\ldots,A[5i]
    Find median }\mp@subsup{\mathbf{b}}{\mathbf{i}}{}\mathrm{ of each }\mp@subsup{\mathbf{L}}{\mathbf{i}}{}\mathrm{ using brute-force
    Find median b}\mathrm{ of }B={\mp@subsup{\mathbf{b}}{1}{},\mp@subsup{\mathbf{b}}{2}{},\ldots,\mp@subsup{\mathbf{b}}{[\mathbf{n}/5\rceil}{}
    Partition A into A Aless and Agreater using b as pivot
    if (|}\mp@subsup{\mathbf{A}}{\mathrm{ less }}{}|)=\mathbf{j}\mathrm{ return b
    else if (|\mp@subsup{A}{less}{l}|)>\mathbf{j}
    return select( (Aless
    else
    return select( ( Agreater , j - |(A)
```

How do we find median of \mathbf{B} ?

Algorithm for Selection

A storm of medians

```
select(A, j):
    Form lists }\mp@subsup{\mathbf{L}}{1}{},\mp@subsup{L}{2}{},\ldots,\mp@subsup{L}{[n/5\rceil}{}\mathrm{ where }\mp@subsup{L}{\mathbf{i}}{}={\mathbf{A}[5\mathbf{5i}-4],\ldots,A[5i]
    Find median \mp@subsup{b}{\mathbf{i}}{}\mathrm{ of each }\mp@subsup{\mathbf{L}}{\mathbf{i}}{}\mathrm{ using brute-force}
    Find median b}\mathrm{ of }\mathbf{B}={\mp@subsup{\mathbf{b}}{\mathbf{1}}{,},\mp@subsup{\mathbf{b}}{2}{},\ldots,\mp@subsup{\mathbf{b}}{\lceil\mathbf{n}/\mathbf{5}\rceil}{}
    Partition A into ( Aless and }\mp@subsup{\mathbf{A}}{\mathrm{ greater using b as pivot}}{
    if (|}\mp@subsup{\mathbf{A}}{\mathrm{ less }}{}|)=\mathbf{j}\mathrm{ return b
    else if (|}\mp@subsup{\mathbf{A}}{\mathrm{ less }}{}|)>\boldsymbol{j}
    return select(A}\mp@subsup{\mathbf{A}}{\mathrm{ less }}{},\mathbf{j}
    else
    return select (Agreater , j - |(A)
```

How do we find median of \mathbf{B} ? Recursively!

Algorithm for Selection

A storm of medians

$\operatorname{select}(\mathbf{A}, \mathbf{j})$:
Form lists $\mathbf{L}_{1}, \mathbf{L}_{2}, \ldots, \mathbf{L}_{\lceil\mathbf{n} / 5\rceil}$ where $\mathbf{L}_{\mathbf{i}}=\{\mathbf{A}[5 i-4], \ldots, \mathbf{A}[5 i]\}$
Find median $\mathbf{b}_{\mathbf{i}}$ of each $\mathbf{L}_{\mathbf{i}}$ using brute-force
$B=\left[b_{1}, b_{2}, \ldots, b_{\lceil n / 5\rceil}\right]$
$b=\operatorname{select}(B,\lceil\mathbf{n} / \mathbf{1 0 \rceil})$
Partition \mathbf{A} into $\mathbf{A}_{\text {less }}$ and $\mathbf{A}_{\text {greater }}$ using \mathbf{b} as pivot
if $\left(\left|\mathbf{A}_{\text {less }}\right|\right)=\mathbf{j}$ return \mathbf{b}
else if $\left.\left(\left|\mathbf{A}_{\text {less }}\right|\right)>\mathbf{j}\right)$
return select $\left(A_{\text {less }}, j\right)$
else
return select $\left(\mathbf{A}_{\text {greater }}, \mathbf{j}-\left|\mathbf{A}_{\text {less }}\right|\right)$

Running time of deterministic median selection

A dance with recurrences

$$
\mathbf{T}(\mathbf{n})=\mathbf{T}(\lceil\mathbf{n} / 5\rceil)+\max \left\{T\left(\left|\mathbf{A}_{\text {less }}\right|\right), \mathbf{T}\left(\mid \mathbf{A}_{\text {greater }}\right) \mid\right\}+\mathbf{O}(\mathbf{n})
$$

Running time of deterministic median selection

 A dance with recurrences$$
T(n)=T(\lceil\mathbf{n} / 5\rceil)+\max \left\{T\left(\left|\mathbf{A}_{\text {less }}\right|\right), \mathbf{T}\left(\mid \mathbf{A}_{\text {greater }}\right) \mid\right\}+\mathbf{O}(\mathbf{n})
$$

From Lemma,

$$
T(n) \leq T(\lceil n / 5\rceil)+T(\lfloor 7 n / 10+6\rfloor)+O(n)
$$

and

$$
T(n)=O(1) \quad n<10
$$

Running time of deterministic median selection

 A dance with recurrences$$
\mathbf{T}(\mathbf{n})=\mathbf{T}(\lceil\mathbf{n} / 5\rceil)+\max \left\{\mathbf{T}\left(\left|\mathbf{A}_{\text {less }}\right|\right), \mathbf{T}\left(\mid \mathbf{A}_{\text {greater }}\right) \mid\right\}+\mathbf{O}(\mathbf{n})
$$

From Lemma,

$$
T(n) \leq T(\lceil n / 5\rceil)+T(\lfloor 7 n / 10+6\rfloor)+O(n)
$$

and

$$
T(n)=O(1) \quad n<10
$$

Exercise: show that $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{n})$

Median of Medians: Proof of Lemma

Proposition

There are at least $\mathbf{3 n} / \mathbf{1 0 - 6}$ elements greater than the median of medians b.

Figure: Shaded elements are all greater than b

Median of Medians: Proof of Lemma

Proposition

There are at least $\mathbf{3 n} / \mathbf{1 0 - 6}$ elements greater than the median of medians b.

Proof.

At least half of the $\lceil\mathbf{n} / \mathbf{5}\rceil$ groups have at least 3 elements larger than b, except for last group and the group containing b. Hence number of elements greater than \mathbf{b} is:

$$
3(\lceil(1 / 2)\lceil n / 5\rceil\rceil-2) \geq 3 n / 10-6
$$

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10-6 elements greater than the median of medians b.

Corollary
 $\left|A_{\text {less }}\right| \leq \mathbf{7 n} / 10+6$.

Via symmetric argument,
Corollary
$\left|A_{\text {greater }}\right| \leq \mathbf{7 n} / \mathbf{1 0}+6$.

Questions to ponder
(1) Why did we choose lists of size $\mathbf{5}$? Will lists of size 3 work?
(2) Write a recurrence to analyze the algorithm's running time if we choose a list of size \mathbf{k}.
n
$\frac{9 n}{10}$

$$
\frac{9}{10} \cdot \frac{9}{10} n
$$

$$
T(n)=T\left(\frac{9 n}{10}\right)+n
$$

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection". Journal of Computer System Sciences (JCSS), 1973.

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".
Journal of Computer System Sciences (JCSS), 1973.
How many Turing Award winners in the author list?

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".
Journal of Computer System Sciences (JCSS), 1973.
How many Turing Award winners in the author list? All except Vaughn Pratt!

Takeaway Points

(1) Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
(2) Recursive algorithms naturally lead to recurrences.
(3) Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.

