CS 374: Algorithms & Models of Computation, Fall 2015

Kartsuba's Algorithm and Linear Time Selection

Lecture 09 September 22, 2015

Part I

Fast Multiplication

Multiplying Numbers

Problem Given two **n**-digit numbers **x** and **y**, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of \mathbf{y} with \mathbf{x} and adding the partial products.

3141
×2718
25128
3141
21987
5282
3537238

Time Analysis of Grade School Multiplication

- Each partial product: Θ(n)
- Oumber of partial products: Θ(n)
- Solution of partial products: $\Theta(n^2)$
- Total time: $\Theta(n^2)$

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac - bd + (ad + bc)i

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac - bd + (ad + bc)i

How many multiplications do we need?

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac - bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

Divide and Conquer

Assume **n** is a power of **2** for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

- **1** $x = x_{n-1}x_{n-2} \dots x_0$ and $y = y_{n-1}y_{n-2} \dots y_0$
- $\ \, {\bf 2} \ \, {\bf x} = {\bf x}_{n-1} \dots {\bf x}_{n/2} {\bf 0} \dots {\bf 0} + {\bf x}_{n/2-1} \dots {\bf x}_0$
- $\textcircled{\ }$ $x_L = 10^{n/2} x_L$ where $x_L = x_{n-1} \dots x_{n/2}$ and $x_R = x_{n/2-1} \dots x_0$
- Similarly $y = 10^{n/2}y_L + y_R$ where $y_L = y_{n-1} \dots y_{n/2}$ and $y_R = y_{n/2-1} \dots y_0$

$\begin{array}{rcl} 1234 \times 5678 &=& (100 \times 12 + 34) \times (100 \times 56 + 78) \\ &=& 10000 \times 12 \times 56 \\ && +100 \times (12 \times 78 + 34 \times 56) \\ && +34 \times 78 \end{array}$

Divide and Conquer

Assume **n** is a power of **2** for simplicity and numbers are in decimal.

•
$$x = x_{n-1}x_{n-2}...x_0$$
 and $y = y_{n-1}y_{n-2}...y_0$
• $x = 10^{n/2}x_L + x_R$ where $x_L = x_{n-1}...x_{n/2}$ and $x_R = x_{n/2-1}...x_0$
• $y = 10^{n/2}y_L + y_R$ where $y_L = y_{n-1}...y_{n/2}$ and

3
$$y = 10^{n/2}y_L + y_R$$
 where $y_L = y_{n-1} \dots y_{n/2}$ and $y_R = y_{n/2-1} \dots y_0$

Therefore

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

Can we invoke Gauss's trick here?

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_Ly_R + x_Ry_L = (x_L + x_R)(y_L + y_R) - x_Ly_L - x_Ry_R$

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_Ly_R + x_Ry_L = (x_L + x_R)(y_L + y_R) - x_Ly_L - x_Ry_R$

Recursively compute only $x_Ly_L, x_Ry_R, (x_L + x_R)(y_L + y_R)$.

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_Ly_R + x_Ry_L = (x_L + x_R)(y_L + y_R) - x_Ly_L - x_Ry_R$

Recursively compute only x_Ly_L , x_Ry_R , $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

```
T(n) = 3T(n/2) + O(n) T(1) = O(1)
```

which means

$$\begin{aligned} xy &= (10^{n/2} x_L + x_R) (10^{n/2} y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2} (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Gauss trick: $x_Ly_R + x_Ry_L = (x_L + x_R)(y_L + y_R) - x_Ly_L - x_Ry_R$

Recursively compute only x_Ly_L , x_Ry_R , $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

State of the Art

Schönhage-Strassen 1971: $O(n \log n \log \log n)$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: O(n log n2^{O(log* n)}) time

Conjecture

There is an **O(n log n)** time algorithm.

Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1+\log 1.5})$

Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1+\log 1.5})$

Use recursion tree method:

- **1** In both cases, depth of recursion $L = \log n$.
- Work at depth i is 4ⁱn/2ⁱ and 3ⁱn/2ⁱ respectively: number of children at depth i times the work at each child
- **③** Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

Recursion tree analysis

13

Part II

Selecting in Unsorted Lists

Rank of element in an array

A: an unsorted array of \boldsymbol{n} integers

Definition

For $1 \leq j \leq n$, element of rank j is the j'th smallest element in A.

Unsorted array	16	14	34	20	12	5	3	19	11
Ranks	6	5	9	8	4	2	1	7	3
Sort of array	3	5	11	12	14	16	19	20	34

Problem - Selection

Input Unsorted array **A** of **n** integers **and** integer **j** Goal Find the **j**th smallest number in **A** (*rank* **j** number)

Median: $\mathbf{j} = \lfloor (\mathbf{n} + 1)/2 \rfloor$

Problem - Selection

Input Unsorted array **A** of **n** integers **and** integer **j** Goal Find the **j**th smallest number in **A** (*rank* **j** number)

Median: $\mathbf{j} = \lfloor (\mathbf{n} + 1)/2 \rfloor$

Simplifying assumption for sake of notation: elements of **A** are distinct

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order
- Time taken = $O(n \log n)$

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order
- Time taken = $O(n \log n)$
- Do we need to sort? Is there an O(n) time algorithm?

Algorithm II

- If \mathbf{j} is small or $\mathbf{n} \mathbf{j}$ is small then
 - Find j smallest/largest elements in A in O(jn) time. (How?)
 - Time to find median is O(n²).

Divide and Conquer Approach

- Pick a pivot element a from A
 Partition A based on a. A_{less} = {x ∈ A | x ≤ a} and A_{greater} = {x ∈ A | x > a}
 |A_{less}| = j: return a
 |A_{less}| > j: recursively find jth smallest element in A_{less}
 |A_{less}| < j: recursively find kth smallest element in A_{greater}
 - where $\mathbf{k} = \mathbf{j} |\mathbf{A}_{less}|$.

Time Analysis

- Partitioning step: O(n) time to scan A
- I How do we choose pivot? Recursive running time?

Time Analysis

- Partitioning step: O(n) time to scan A
- I How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Time Analysis

- Partitioning step: O(n) time to scan A
- I How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say **A** is sorted in increasing order and $\mathbf{j} = \mathbf{n}$. Exercise: show that algorithm takes $\Omega(\mathbf{n}^2)$ time

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

 $T(n) \leq n + T\left(\frac{3n}{n}\right)$

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

How do we find such a pivot?

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly?

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?

Divide and Conquer Approach A game of medians

Idea

- Break input A into many subarrays: L₁,... L_k.
- Find median m_i in each subarray L_i.
- **③** Find the median **x** of the medians $\mathbf{m}_1, \ldots, \mathbf{m}_k$.
- Intuition: The median x should be close to being a good median of all the numbers in A.
- Use x as pivot in previous algorithm.

Example

<u>n</u> 3

Choosing the pivot

A clash of medians

- Partition array A into $\lceil n/5 \rceil$ lists of 5 items each. $L_1 = \{A[1], A[2], \dots, A[5]\}, L_2 = \{A[6], \dots, A[10]\}, \dots, L_i = \{A[5i + 1], \dots, A[5i - 4]\}, \dots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil - 4, \dots, A[n]\}.$
- For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- Find median b of B

Choosing the pivot

A clash of medians

- Partition array A into $\lceil n/5 \rceil$ lists of 5 items each. L₁ = {A[1], A[2], ..., A[5]}, L₂ = {A[6], ..., A[10]}, ..., L_i = {A[5i + 1], ..., A[5i - 4]}, ..., L_[n/5] = {A[5[n/5] - 4, ..., A[n]}.
- For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- Find median b of B

Lemma

Median of **B** is an approximate median of **A**. That is, if **b** is used a pivot to partition **A**, then $|\mathbf{A}_{less}| \leq 7n/10 + 6$ and $|\mathbf{A}_{greater}| \leq 7n/10 + 6$.

$$\begin{array}{l} \mbox{select}(A,\ j): \\ \mbox{Form lists } L_1, L_2, \ldots, L_{\lceil n/5\rceil} \ \mbox{where } L_i = \{A[5i-4], \ldots, A[5i]\} \\ \mbox{Find median } b_i \ \mbox{of each } L_i \ \mbox{using brute-force} \\ \mbox{Find median } b \ \mbox{of } B = \{b_1, b_2, \ldots, b_{\lceil n/5\rceil}\} \\ \mbox{Partition } A \ \mbox{into } A_{less} \ \mbox{and } A_{greater} \ \mbox{using } b \ \mbox{as pivot} \\ \mbox{if } (|A_{less}|) = j \ \mbox{return } b \\ \mbox{else if } (|A_{less}|) > j) \\ \mbox{return select}(A_{less},\ j) \\ \mbox{else} \\ \mbox{return select}(A_{greater},\ j-|A_{less}|) \end{tabular}$$

How do we find median of **B**?

How do we find median of **B**? Recursively!

Running time of deterministic median selection A dance with recurrences

$T(n) = T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$

Running time of deterministic median selection A dance with recurrences

$T(n) = T(\lceil n/5 \rceil) + \max\{T(|A_{\text{less}}|), T(|A_{\text{greater}})|\} + O(n)$

From Lemma,

and

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\lceil \mathsf{n}/5 \rceil) + \mathsf{T}(\lfloor 7\mathsf{n}/10 + 6 \rfloor) + \mathsf{O}(\mathsf{n})$$
 $\mathsf{T}(\mathsf{n}) = \mathsf{O}(1) \qquad \mathsf{n} < 10$

Running time of deterministic median selection A dance with recurrences

$T(n) = T(\lceil n/5 \rceil) + \max\{T(|A_{\text{less}}|), T(|A_{\text{greater}})|\} + O(n)$

From Lemma,

and

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\lceil \mathsf{n}/5 \rceil) + \mathsf{T}(\lfloor 7\mathsf{n}/10 + 6 \rfloor) + \mathsf{O}(\mathsf{n})$$

$$\mathsf{T}(\mathsf{n}) = \mathsf{O}(1) \qquad \mathsf{n} < 10$$

Exercise: show that T(n) = O(n)

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10 - 6 elements greater than the median of medians **b**.

Figure : Shaded elements are all greater than **b**

Median of Medians: Proof of Lemma

Figure : Shaded elements are all greater than **b**

Proposition

There are at least 3n/10 - 6 elements greater than the median of medians **b**.

Proof.

At least half of the $\lceil n/5 \rceil$ groups have at least 3 elements larger than **b**, except for last group and the group containing **b**. Hence number of elements greater than **b** is:

 $3(\lceil (1/2) \lceil n/5 \rceil \rceil - 2) \ge 3n/10 - 6$

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10 - 6 elements greater than the median of medians **b**.

Corollary

 $|\mathbf{A}_{less}| \leq \mathbf{7n}/\mathbf{10} + \mathbf{6}.$

Via symmetric argument,

Questions to ponder

- Why did we choose lists of size **5**? Will lists of size **3** work?
- Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

Takeaway Points

- Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
- 2 Recursive algorithms naturally lead to recurrences.
- Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.