Proving that a problem \(X \) is NP-hard requires several steps:

- Choose a problem \(Y \) that you already know is NP-hard.
- Describe a reduction \(f \) from \(Y \) to \(X \), i.e., given input \(w \) for problem \(Y \), \(f(w) \) is an input to problem \(X \).
- Prove that the function \(f \) is computable in polynomial time, by outlining an algorithm running in polynomial time that computes \(f \).
- Prove that your reduction \(f \) is correct. This almost always requires two separate steps:
 - Prove that if \(w \in Y \) then \(f(w) \in X \), i.e., the reduction \(f \) transforms “yes” instances of \(Y \) into “yes” instances of \(X \).
 - Prove that if \(w \notin Y \) then \(f(w) \notin X \), i.e., the reduction \(f \) transforms “no” instances of \(Y \) into “no” instances of \(X \). Equivalently: Prove that if \(f(w) \in X \) then \(w \in Y \).

Proving that \(X \) is NP-Complete requires you to additionally prove that \(X \in \text{NP} \) by describing a non-deterministic polynomial-time algorithm for \(X \). Typically this is not hard for the problems we consider but it is not always obvious.

Problem 1. [Category: Proof] Recall the following \textsc{kColor} problem: Given an undirected graph \(G \), can its vertices be colored with \(k \) colors, so that the endpoints of every edge get different colors?

1. Describe a direct polynomial-time reduction from \textsc{3Color} to \textsc{4Color}. \textit{Hint}: Your reduction will take a graph \(G \) and output another graph \(G' \) such that \(G' \) is 4-colorable if and only if \(G \) is 3-colorable. You should think how an explicit 4-coloring for \(G' \) would enable you to obtain an explicit 3-coloring for \(G \).

2. Prove that \textsc{kColor} problem is NP-hard for any \(k \geq 3 \), by showing that \textsc{3Color} \(\leq \text{P} \) \textsc{kColor}, for \(k \geq 3 \).

Problem 2. [Category: Proof] Describe a polynomial-time reduction from \textsc{3Color} to \textsc{Sat}. Can you generalize it to reduce \textsc{kColor} to \textsc{Sat}. \textit{Hint}: Use a variable \(x(v, i) \) to indicate that \(v \) is colored \(i \) and express the constraints using clauses in CNF form.

Problem 3. [Category: Proof] Let \(G = (V, E) \) be a directed graph with edge lengths \(\ell(e), e \in E \). The lengths can be positive or negative. The Zero-Length-Cycle Problem is to decide whether \(G \) has a cycle \(C \) of length exactly equal to 0. Prove that this problem is NP-Complete. \textit{Hint: reduce Hamiltonian Path to Zero-Length-Cycle}