Problem 1. [Category: Proof] Suppose we are given both an undirected graph G with weighted edges and a minimum spanning tree T of G. In all cases, the input to your algorithm is the edge e and its new weight; your algorithms should modify T so that it is still a minimum spanning tree. Of course, we could just recompute the minimum spanning tree from scratch in $O((|E| + |V|) \log |V|)$ time, but you can do better.

1. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge $e \in T$ is decreased.

2. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge $e \not\in T$ is increased.

3. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge $e \in T$ is increased.

4. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge $e \not\in T$ is decreased.

Problem 2. [Category: Design] Let $G = (V, E)$ be an undirected graph where each edge has a weight from the set $\{1, 10, 25\}$. Describe a linear-time algorithm to find an MST of G.