Problem 1. [Category: Design]

2. Now suppose $A[1..n]$ is a sorted array of n distinct positive integers. Describe an even faster algorithm that either computes an index i such that $A[i] = i$ or correctly reports that no such index exists. Hint: This is really easy.

Problem 3. [Category: Design]

1. Suppose you are given two sorted arrays $A[1..n]$ and $B[1..n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the nth smallest element) of the union $A \cup B$.

2. Now suppose you are given two sorted arrays $A[1..m]$ and $B[1..n]$ and an integer k. Describe a fast algorithm to find the kth smallest element in the union $A \cup B$.