For each statement below, check “Yes” if the statement is always true and “No” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking “I don’t know” is worth +¼ point; and flipping a coin is (on average) worth +¼ point.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>No infinite language is regular.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>If L is regular, then for every string $w \in L$, there is a DFA that rejects w.</td>
<td>X</td>
<td>No</td>
<td>IDK</td>
</tr>
<tr>
<td>If L is context-free and L has a finite fooling set, then L is not regular.</td>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
</tr>
<tr>
<td>If L is regular and $L' \cap L = \emptyset$, then L' is not regular.</td>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
</tr>
<tr>
<td>The language ${0^i1^j0^k \mid i + j + k \geq 374}$ is regular.</td>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
</tr>
<tr>
<td>The language ${0^i1^j0^k \mid i + j - k \geq 374}$ is regular.</td>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
</tr>
<tr>
<td>Let $M = (Q, {0, 1}, s, A, \delta)$ be an arbitrary DFA, and let $M' = (Q, {0, 1}, s, A, \delta')$ be the DFA obtained from M by changing every 0-transition into a 1-transition and vice versa. More formally, M and M' have the same states, input alphabet, starting state, and accepting states, but $\delta'(q, 0) = \delta(q, 1)$ and $\delta'(q, 1) = \delta(q, 0)$. Then $L(M) \cup L(M') = {0, 1}^*$.</td>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
</tr>
<tr>
<td>Solution: If $L(M) = \emptyset$, then $L(M') = \emptyset$ as well.</td>
<td></td>
<td></td>
<td>■</td>
</tr>
</tbody>
</table>

Solution: \emptyset^* is both infinite and regular. ■

Solution: For every string w—in particular, for every string $w \in L$—there is a one-state DFA that rejects w. ■

Solution: \emptyset is a finite fooling set for every language, regular or not. \emptyset^* is both context-free and regular. ■

Solution: Consider $L' = \emptyset$, which is regular. ■

Solution: This language can be written as $\emptyset^*1^*0^* \setminus L$, where L is a finite language (all binary strings of length less than 374). ■

Solution: Consider the fooling set $F = 01^*$. ■

Solution: If $L(M) = \emptyset$, then $L(M') = \emptyset$ as well. ■
Let $M = (Q, \Sigma, s, A, \delta)$ be an arbitrary NFA, and $M' = (Q', \Sigma, s, A', \delta')$ be any NFA obtained from M by deleting some subset of the states. More formally, we have $Q' \subseteq Q$, $A' = A \cap Q'$, and $\delta'(q, a) = \delta(q, a) \cap Q'$ for all $q \in Q'$. Then $L(M') \subseteq L(M)$.

Solution: Every path from s to an accepting state in M' is also a path from s to an accepting state in M. Thus, every string accepted by M' is also accepted by M. ■

For every non-regular language L, the language $\{\varepsilon^{|w|} \mid w \in L\}$ is also non-regular.

Solution: If $L = \{0^{2n} \mid n \geq 0\}$, then $L^* = \varepsilon^*$. ■

For every context-free language L, the language $\{\varepsilon^{|w|} \mid w \in L\}$ is also context-free.

Solution: Replace each terminal symbol in the context-free grammar for L with a ε. ■
Prove that if L is a regular language, then $\text{STRIPFINAL}\emptyset s(L)$ is also a regular language.

Solution: Let $M = (Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M' = (Q', s', A', \delta')$ with ϵ-transitions that accepts $\text{STRIPFINAL}\emptyset s(L)$ as follows:

- $Q' = Q \cup \{\text{pass}, \text{strip}\}$
- $s' = (s, \text{pass})$
- $A' = A \times \{\text{pass}\}$
- $\delta'((q, \text{pass}), \epsilon) = \{(q, \text{strip})\}$
- $\delta'((q, \text{pass}), a) = \{(\delta(q, a), \text{pass})\}$
- $\delta'((q, \text{strip}), \epsilon) = \{(\delta(q, \emptyset), \text{strip})\}$
- $\delta'((q, \text{strip}), a) = \emptyset$

Less formally: Add a shadow copy of M with \emptyset-transitions replaced by ϵ-transitions and 1-transitions deleted, which guesses the deleted suffix of \emptysets.

Solution: Let $M = (Q, s, A, \delta)$ be a DFA that accepts L. We construct a new DFA $M' = (Q, s', A', \delta')$ with that accepts $\text{STRIPFINAL}\emptyset s(L)$ by modifying the accepting states as follows:

- $A' = \{q \in Q \mid \delta^n(q, \emptyset) \cap A \neq \emptyset \text{ for some } n \geq 0\}$

Less formally: State q is an accepting state in M' if and only if there is a path of \emptyset-transitions from q to an accepting state of M.

Rubric:

- 10 points = + 4 for a formal, complete, and unambiguous description of the output automaton.
- − 2 for omitting \emptyset transitions without declaring that omission.
- + 6 for correctness = + 1½ for accepting ϵ when L contains at least one string in \emptyset^*
- + 1½ for accepting every non-empty string in $\text{STRIPFINAL}\emptyset s(L)$
- + 1½ for rejecting ϵ when $L \cap \emptyset^* = \emptyset$
- + 1½ for rejecting every non-empty string not in $\text{STRIPFINAL}\emptyset s(L)$
- − 1 for a single typo or similar mistake

English explanation is not required, but may help us give you partial credit.
For each of the following languages L over the alphabet $\Sigma = \{0, 1\}$, give a regular expression that represents L and describe a DFA that recognizes L.

(a) $\{0^n1^n \mid n \geq 1 \text{ and } w \in \Sigma^+\}$

Solution: $0(0 + 1)(0 + 1)^*1$

Solution: $0(0 + 1)^+1$

(b) All strings in 0^*1*0^* whose length is even.

Solution: $(00)^*(11)^*(00)^* + (00)^*(0 + 1)(11)^*(0 + 1)(00)^*$

Rubric:

10 points = 2½ for each regular expression + 2½ for each DFA. Grade as four separate subproblems, each with IDK partial credit available.

- ½ for one typo
- 1 for incorrectly including/excluding a finite number of strings
- 2½ for incorrectly including/excluding an infinite number of strings
- 1 for omitting fail state from DFA without declaring that omission explicitly.

Explanations are not required for full credit. No penalty for leaving DFA states unlabeled. These are not the only correct answers.
(a) Give a self-contained, formal, recursive definition of the \textit{parity} function. (In particular, do not refer to # or other functions defined in class.)

\textbf{Solution:} \[\text{parity}(w) = \begin{cases} 0 & \text{if } w = \epsilon \\ a \oplus \text{parity}(x) & \text{if } w = ax \end{cases} \]

Here \oplus is exclusive-or: $0 \oplus 0 = 1 \oplus 1 = 0$ and $0 \oplus 1 = 1 \oplus 0 = 1$. ■

\textbf{Rubric:} 2 points = $\frac{1}{2}$ for base case + $\frac{1}{2}$ for recursive case. These are not the only correct solutions. No penalty for using arithmetic or logical functions (such as $\neg a$ or $\sim a$ or \overline{a} or $1 - a$ or $(a + 1) \mod 2$ for logical negation). No credit for solutions that directly refer to “the number of 1s”.

(b) Let \(L \) be an arbitrary regular language. Prove that \(\text{OddParity}(L) := \{ w \in L \mid \text{parity}(w) = 1 \} \) is also regular.

\textbf{Solution:} \[\text{OddParity}(L) = L \cap (0^*10^*1)^*0^*10^* \], where the latter regular expression describes all binary strings with odd parity. ■

\textbf{Solution:} We can construct a DFA for \(\text{OddParity}(L) \) as the product of an arbitrary DFA for \(L \) and the following two-state DFA for all strings with odd parity:

\begin{center}
\begin{tikzpicture}
\node[state,accepting] (q0) {0};
\node[state,accepting] (q1) [right of=q0] {1};
\path[->] (q0) edge [loop below] node {0} (q0)
(q0) edge [bend left] node {1} (q1)
(q1) edge [loop above] node {1} (q1);
\end{tikzpicture}
\end{center}

A state \((p,q)\) in the product DFA is accepting if and only if both \(p \) and \(q \) are accepting states of their respective DFAs. ■

\textbf{Solution:} Given a DFA \(M = (Q,s,A,\delta) \) for \(L \), we construct a new DFA \(M' = (Q',s',A',\delta') \) for \(\text{EvenParity}(L) \) as follows:

\[Q' = Q \times \{ \emptyset, 1 \} \]
\[s' = (s, \emptyset) \]
\[A' = A \times \{ 1 \} \]
\[\delta'(q,p),a) = (\delta(q,a), p \oplus a) \]

In each state \((q,p)\) of \(M' \), \(q \) is the current state of \(M \) and \(p \) is the parity of the input read so far. ■
Rubric: 4 points:
- For closure argument: −1 for single mistake in “even” regular expression
- For product construction: −1 for not specifying the accepting states of the final DFA.
- For explicit DFA construction: 1 for complete explicit formal DFA description + 1½ for correct acceptances + 1½ for correct rejections

(c) Let L be an arbitrary regular language. Prove that $AddParity(L) := \{parity(w) \cdot w \mid w \in L\}$ is also regular.

Solution: $AddParity(L) = ((\emptyset + 1) \cdot L) \setminus OddParity((\emptyset + 1) \cdot L)$. The string $parity(w) \cdot w$ always has even parity.

Solution: $AddParity(L) = ((\emptyset + 1) \cdot L) \cap (\emptyset^*10^*1)^*\emptyset^*10^*$. ■

Solution: $AddParity(L) = 1 \cdot OddParity(L) + \emptyset \cdot (L \setminus OddParity(L)) \cdot 1$. ■

Solution: $AddParity(L) = 1 \cdot OddParity(L) + \emptyset \cdot EvenParity(L)$, where $EvenParity(L) = L \setminus OddParity(L)$ ■

Solution: $AddParity(L) = 1 \cdot OddParity(L) + \emptyset \cdot EvenParity(L)$, where $EvenParity(L) = L \cap (\emptyset^*10^*1)^*\emptyset^*$. ■

Solution: $AddParity(L) = 1 \cdot OddParity(L) + \emptyset \cdot EvenParity(L)$, where $EvenParity(L)$ is accepted by the same product DFA as $OddParity(L)$, but with accepting states $A \times \{\emptyset\}$ instead of $A \times \{1\}$. ■

Rubric: Max 4 points. These are not the only correct solutions. A correct solution for (c) that assumes (b) is worth full credit, even if the solution to (b) is incorrect.
Let L be the language $\{0^i 1^j 0^k \mid 2i = k \text{ or } i = 2k\}$.

(a) **Prove** that L is not a regular language.

Solution: Consider the set $F = 0^*$. Let x and y be arbitrary distinct strings in F. Then $x = 0^i$ and $y = 0^j$ for some integers $i \neq j$. Let $z = 0^i 10^j$. Then $xz = 0^{2i} 10^i \in L$, but $yz = 0^{i+j} 10^i \notin L$, because $j + i \neq 2i$ and $2(j + i) \neq i$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular. ■

Solution: Consider the set $F = 0^*$. Let x and y be arbitrary distinct strings in F. Then $x = 0^i$ and $y = 0^j$ for some integers $i \neq j$. Without loss of generality, assume $i < j$. Let $z = 10^{2j}$. Then $xz = 0^i 10^{2j} \notin L$, because $2i < 2j$ and $i < j < 4j$. But $yz = 0^j 10^{2j} \in L$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular. ■

Solution: Consider the set $F = (00)^*$. Let x and y be arbitrary distinct strings in F. Then $x = 0^{2i}$ and $y = 0^{2j}$ for some positive integers $i \neq j$. Without loss of generality, assume $i < j$. Let $z = 10^i$. Then $xz = 0^{2i} 10^i \in L$. But $yz = 0^{2j} 10^i \notin L$ because $2j > 2i$ and $4j > i$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular. ■

Rubric: 5 points: standard fooling set rubric (see HW2). These are not the only correct answers.
(b) Describe a context-free grammar for L.

Solution:

\[
\begin{align*}
S & \rightarrow A \mid B \\
A & \rightarrow 0A00 \mid C \\
B & \rightarrow 00B0 \mid C \\
C & \rightarrow 1C \mid \varepsilon
\end{align*}
\]

\[\text{[2i = k]} \quad \text{[i = 2k]} \quad \text{[1*]}\]

Rubric: 5 points:
- 1 for single typo or similar mistake
- 1 for incorrectly omitting ε
- 2 for incorrectly omitting/including a finite number of non-empty strings
- 5 for incorrectly omitting/including a infinite number of strings

This is not the only correct answer. Explanations of nonterminals are not required, but they may help us give you partial credit.