For each statement below, check “Yes” if the statement is always true and “No” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking “I don’t know” is worth +¼ point; and flipping a coin is (on average) worth +¼ point.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every infinite language is regular.</td>
<td>Solution: {0^n1^n \mid n \geq 0} is infinite but not regular.</td>
<td>■</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (L) is not regular, then for every string (w \in L), there is a DFA that accepts (w).</td>
<td>Solution: For every string (w)—in particular, for every string (w \in L)—there is a one-state DFA that accepts (w).</td>
<td>■</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (L) is context-free and (L) has a finite fooling set, then (L) is regular.</td>
<td>Solution: (\emptyset) is a finite fooling set for every language, regular or not. ({0^n1^n \mid n \geq 0}) is context-free but not regular.</td>
<td>■</td>
</tr>
</tbody>
</table>

The next question was asked inconsistently in the question handout and the answer booklet. All students will receive full credit for this question.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question handout: If (L) is regular and (L' \cap L = \emptyset), then (L') is regular.</td>
<td>Solution: (L = \underbrace{000000}_{6 \text{ times}}(000)^*) is regular, (L' = {0^p \mid p \text{ is prime}}) is not regular, and (L' \cap L = \emptyset).</td>
<td>■</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer booklet: If (L) is regular and (L' \cap L = \emptyset), then (L') is not regular.</td>
<td>Solution: Consider (L' = \emptyset), which is regular.</td>
<td>■</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>The language ({0^i10^j0^k \mid i + j + k \geq 374}) is not regular.</td>
<td>Solution: This language is finite and therefore regular.</td>
<td>■</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>The language ({0^i10^j0^k \mid i + j - k \geq 374}) is not regular.</td>
<td>Solution: Consider the fooling set (F = 01^*).</td>
<td>■</td>
</tr>
</tbody>
</table>
Let $M = (Q, \{0, 1\}, s, A, \delta)$ be an arbitrary DFA, and let $M' = (Q, \{0, 1\}, s, A, \delta')$ be the DFA obtained from M by changing every 0-transition into a 1-transition and vice versa. More formally, M and M' the same states, input alphabet, starting state, and accepting states, but $\delta'(q, 0) = \delta(q, 1)$ and $\delta'(q, 1) = \delta(q, 0)$. Then $L(M) \cap L(M') = \emptyset$.

Solution: If $L(M) = (0 + 1)^*$, then $L(M') = (0 + 1)^*$ as well. ■

Let $M = (Q, \Sigma, s, A, \delta)$ be an arbitrary NFA, and $M' = (Q', \Sigma, s, A', \delta')$ be a NFA obtained from M by deleting some subset of the states. More formally, we have $Q' \subseteq Q$, $A' = A \cap Q'$, and $\delta'(q, a) = \delta(q, a) \cap Q'$ for all $q \in Q'$. Then $L(M') \subseteq L(M)$.

Solution: Every path from s to an accepting state in M' is also a path from s to an accepting state in M. Thus, every string accepted by M' is also accepted by M. ■

For every regular language L, the language $\{0|w| | w \in L\}$ is also regular.

Solution: Replace each symbol in the regular expression for L with a 0. ■

Solution: Given a DFA $M = (Q, \Sigma, s, A, \delta)$ for L, build an NFA $M' = (Q, \{0\}, s, A, \delta')$ for L' by defining $\delta'(q, a) = \{\delta(q, a) | a \in \Sigma\}$. ■

For every context-free language L, the language $\{0|w| | w \in L\}$ is also context-free.

Solution: Replace each terminal symbol in the context-free grammar for L with a 0. ■

Rubric: max 10 points = +1 for each correct answer – ½ for each incorrect answer + ¼ for each IDK; round negative scores up to zero. Explanations are not required (and will be ignored if provided).
Prove that if \(L \) is a regular language, then \(\text{STRIPINIT0S}(L) \) is also a regular language.

Solution: Let \(M = (Q, s, A, \delta) \) be a DFA that accepts \(L \). We construct an NFA \(M' = (Q', s', A', \delta') \) with \(\epsilon \)-transitions that accepts \(\text{STRIPINIT0S}(L) \) as follows:

\[
\begin{align*}
Q' &= Q \cup \{ \text{strip}, \text{pass} \} \\
s' &= (s, \text{strip}) \\
A' &= A \times \{ \text{pass} \} \\
\delta'((q, \text{strip}), \epsilon) &= \{(\delta(q, \theta), \text{strip}), (q, \text{pass})\} \\
\delta'((q, \text{strip}), a) &= \emptyset \\
\delta'((q, \text{pass}), \epsilon) &= \emptyset \\
\delta'((q, \text{pass}), a) &= \{(\delta(q, a), \text{pass})\}
\end{align*}
\]

Less formally: Add a shadow copy of \(M \) with \(\theta \)-transitions replaced by \(\epsilon \)-transitions and \(1 \)-transitions deleted, which guesses the deleted prefix of \(\theta \)'s.

Solution: Let \(M = (Q, s, A, \delta) \) be a DFA that accepts \(L \). We construct an NFA \(M' = (Q', s', A', \delta') \) with \(\epsilon \)-transitions that accepts \(\text{STRIPINIT0S}(L) \) as follows:

\[
\begin{align*}
Q' &= Q \cup \{ s' \} \\
s' &\text{ is an explicit state in } Q' \\
A' &= A \\
\delta'(s', \epsilon) &= \bigcup_{n \geq 0} \delta^*(s, \theta^n) \\
\delta'(s', a) &= \emptyset \\
\delta'(q, \epsilon) &= \emptyset \\
\delta'(q, a) &= \{ \delta(q, a) \}
\end{align*}
\]

Less formally: Add a new start state \(s' \) with \(\epsilon \)-transitions to every state reachable from \(s \) by \(\theta \)-transitions alone.

Rubric: 10 points =

+ 4 for a formal, complete, and unambiguous description of the output automaton.
 − 2 for omitting \(\emptyset \) transitions without declaring that omission.
+ 6 for correctness =
 + 1\(\frac{1}{2} \) for accepting \(\epsilon \) when \(L \) contains at least one string in \(\theta^* \)
 + 1\(\frac{1}{2} \) for accepting every non-empty string in \(\text{STRIPINIT0S}(L) \)
 + 1\(\frac{1}{2} \) for rejecting \(\epsilon \) when \(L \cap \theta^* = \emptyset \)
 + 1\(\frac{1}{2} \) for rejecting every non-empty string not in \(\text{STRIPINIT0S}(L) \)
 − 1 for a single typo or similar mistake

• English explanation is not required, but may help us give you partial credit.
For each of the following languages \(L \) over the alphabet \(\Sigma = \{0, 1\} \), give a regular expression that represents \(L \) and describe a DFA that recognizes \(L \).

(a) \(\{0^n1^n \mid n > 1 \text{ and } w \in \Sigma^* \} \)

Solution: \(00(0 + 1)^*11 \)

(b) All strings in \(0^*10^* \) whose length is a multiple of 3.

Solution: \((000)^*(001 + 010 + 100)(000)^* \)
Solution: \((000)^*1(000)^*00 + 0(000)^*1(000)^*0 + 00(000)^*1(000)^* \)

Solution:

All missing transitions in the figure go to a hidden fail state. Each non-fail state is labeled with a pair \((i, j)\) of integers, where \(i\) is the number of symbols read mod 3, and \(j\) is the number of 1s read.

Rubric: 10 points = \(2 \frac{1}{2} \) for each regular expression + \(2 \frac{1}{2} \) for each DFA. Grade as four separate subproblems, each with IDK partial credit available.
- \(\frac{1}{2} \) for one typo
- \(1 \) for incorrectly including/excluding a finite number of strings
- \(2 \frac{1}{2} \) for incorrectly including/excluding an infinite number of strings
- \(1 \) for omitting fail state from DFA without declaring that omission explicitly.

Explanations are not required for full credit. No penalty for leaving DFA states unlabeled. These are not the only correct answers.
(a) Give a self-contained, formal, recursive definition of the parity function. (In particular, do not refer to # or other functions defined in class.)

Solution: \(\text{parity}(w) = \begin{cases} 0 & \text{if } w = \epsilon \\ a \oplus \text{parity}(x) & \text{if } w = ax \end{cases} \)

Here \(\oplus \) is exclusive-or: \(0 \oplus 0 = 1 \), \(1 \oplus 1 = 0 \) and \(0 \oplus 1 = 1 \oplus 0 = 1 \).

(b) Let \(L \) be an arbitrary regular language. Prove that \(\text{EvenParity}(L) := \{ w \in L \mid \text{parity}(w) = 0 \} \) is also regular.

Solution: \(\text{EvenParity}(L) = L \cap (0^*10^*1)^*0^* \), where the latter regular expression describes all binary strings with even parity.

Rubric: 2 points = ½ for base case + 1½ for recursive case. These are not the only correct solutions. No penalty for using arithmetic or logical functions (such as \(\neg a \) or \(\sim a \) or \(!a \) or \(1-a \) or \((a+1) \mod 2 \) for logical negation). No credit for solutions that directly refer to “the number of 1s”.

Solution: We can construct a DFA for \(\text{EvenParity}(L) \) as the product of an arbitrary DFA for \(L \) and the following two-state DFA for all strings with even parity:

A state \((p, q)\) in the product DFA is accepting if and only if both \(p \) and \(q \) are accepting states of their respective DFAs.

Solution: Given a DFA \(M = (Q, s, A, \delta) \) for \(L \), we construct a new DFA \(M' = (Q', s', A', \delta') \) for \(\text{EvenParity}(L) \) as follows:

\[
Q' = Q \times \{0, 1\} \\
s' = (s, 0) \\
A' = A \times \{0\} \\
\delta'(q, p, a) = (\delta(q, a), p \oplus a)
\]

In each state \((q, p)\) of \(M' \), \(q \) is the current state of \(M \) and \(p \) is the parity of the input read so far.
Rubric: 4 points:
- For closure argument: −1 for single mistake in “even” regular expression
- For product construction: −1 for not specifying the accepting states of the final DFA.
- For explicit DFA construction: 1 for complete explicit formal DFA description + 1½ for correct acceptances + 1½ for correct rejections

(c) Let L be an arbitrary regular language. Prove that $AddParity(L) := \{w \cdot \text{parity}(w) \mid w \in L\}$ is also regular.

Solution: $AddParity(L) = EvenParity(L \cdot (\emptyset + 1))$.
The string $w \cdot \text{parity}(w)$ always has even parity. ■

Solution: $AddParity(L) = (L \cdot (\emptyset + 1)) \cap (\emptyset^*10^*1)^*0^*$. ■

Solution: $AddParity(L) = EvenParity(L) \cdot \emptyset + (L \setminus EvenParity(L)) \cdot 1$. ■

Solution: $AddParity(L) = EvenParity(L) \cdot \emptyset + OddParity(L) \cdot 1$, where $OddParity(L) = L \setminus EvenParity(L)$ ■

Solution: $AddParity(L) = EvenParity(L) \cdot \emptyset + OddParity(L) \cdot 1$, where $OddParity(L) = L \cap (\emptyset^*10^*1)^*0^*10^*$ ■

Solution: $AddParity(L) = EvenParity(L) \cdot \emptyset + OddParity(L) \cdot 1$, where $OddParity(L)$ is accepted by the same product DFA as $EvenParity(L)$, but with accepting states $A \times \{1\}$ instead of $A \times \{0\}$. ■

Rubric: Max 4 points. These are not the only correct solutions. A correct solution for (c) that assumes (b) is worth full credit, even if the solution to (b) is incorrect.
Let L be the language \(\{ 0^i 1^j 0^k \mid i = j \text{ or } j = k \} \).

(a) **Prove** that L is not a regular language.

Solution: Consider the set $F = \emptyset^*.$

Let x and y be arbitrary distinct strings in $F.$

Then $x = \emptyset^i$ and $y = \emptyset^j$ for some integers $i \neq j.$

Let $z = 1^i \emptyset^{i+1}.$

Then $xz = 0^i 1^j \emptyset^{i+1} \in L,$ but $yz = 0^j 1^i \emptyset^{i+1} \notin L$ because $j \neq i$ and $i \neq i + 1.$

Thus, F is a fooling set for $L.$

Because F is infinite, L cannot be regular.

Solution: Consider the set $F = 11^*.$

Let x and y be arbitrary distinct strings in $F.$

Then $x = 1^i$ and $y = 1^j$ for some positive integers $i \neq j.$

Let $z = 1^i.$

Then $xz = 1^i \emptyset^i = 0^0 1^i \emptyset^i \in L,$ but $yz = 1^j \emptyset^i = 0^0 1^j \emptyset^i \notin L$ because $0 \neq j$ and $j \neq i.$

Thus, F is a fooling set for $L.$

Because F is infinite, L cannot be regular.

Rubric: 5 points: standard fooling set rubric (see HW2). These are not the only correct answers.
(b) Describe a context-free grammar for L.

Solution:

\[
S \rightarrow AB \mid BC \\
A \rightarrow 0A1 \mid \varepsilon \quad [0^n1^n] \\
B \rightarrow 0B \mid \varepsilon \quad [\theta^+] \\
C \rightarrow 1C0 \mid \varepsilon \quad [1^n\theta^n]
\]

Rubric: 5 points:
- 1 for single typo or similar mistake
- 1 for incorrectly omitting ε
- 2 for incorrectly omitting/including a finite number of non-empty strings
- 5 for incorrectly omitting/including a infinite number of strings

This is not the only correct answer. Explanations of nonterminals are not required, but they may help us give you partial credit.