Give regular expressions for each of the following languages over the alphabet \{0, 1\}.

1. All strings containing the substring 000.
 Solution: \((0 + 1)^*000(0 + 1)^*\)

2. All strings not containing the substring 000.
 Solution: \((1 + 01 + 001)^*(\epsilon + 0 + 00)\)
 Solution: \((\epsilon + 0 + 00)(1(\epsilon + 0 + 00))^*\)

3. All strings in which every run of 0s has length at least 3.
 Solution: \((1 + 000^*)^*\)
 Solution: \((\epsilon + 1)((\epsilon + 000^*)1)^*(\epsilon + 000^*)\)

4. All strings in which every substring 000 appears after every 1.
 Solution: \((1 + 01 + 001)^*0^*\)

5. All strings containing at least three 0s.
 Solution: \((0 + 1)^*0(0 + 1)^*0(0 + 1)^*0(0 + 1)^*\)
 Solution (clever): \(1^*01^*01^*0(0 + 1)^*\) or \((0 + 1)^*01^*01^*01^*\)

6. Every string except 000. [Hint: Don't try to be clever.]
 Solution: Every string \(w \neq 000\) satisfies one of three conditions: Either \(|w| < 3\), or \(|w| = 3\) and \(w \neq 000\), or \(|w| > 3\). The first two cases include only a finite number of strings, so we just list them explicitly, each case on one line. The expression on the last line includes all strings of length at least 4.

 \[
 \epsilon + 0 + 1 + 00 + 01 + 10 + 11 \\
 + 001 + 010 + 011 + 100 + 101 + 110 + 111 \\
 + (1 + 0)(1 + 0)(1 + 0)(1 + 0)(1 + 0)^*
 \]
 Solution (clever): \(\epsilon + 0 + 00 + (1 + 01 + 001 + 000(1 + 0))(1 + 0)^*\)
7. All strings \(w \) such that in every prefix of \(w \), the number of 0s and 1s differ by at most 1.

Solution: Equivalently, all strings that alternate between 0s and 1s:
\[
0(10)^* + (10)^* + (10)^* 1 + (01)^*
\]

Solution: Equivalently, all strings that alternate between 0s and 1s:
\[
(\emptyset + \varepsilon)(10)^*(1 + \varepsilon)
\]

*8. All strings containing at least two 0s and at least one 1.

Solution: There are three possibilities for how the three required symbols are ordered:

- Contains a 1 before two 0s:
 \[
 (\emptyset + 1)^* 1(\emptyset + 1)^* \emptyset(\emptyset + 1)^* \emptyset(\emptyset + 1)^*
 \]

- Contains a 1 between two 0s:
 \[
 (\emptyset + 1)^* \emptyset(\emptyset + 1)^* 1(\emptyset + 1)^* \emptyset(\emptyset + 1)^*
 \]

- Contains a 1 after two 0s:
 \[
 (\emptyset + 1)^* \emptyset(\emptyset + 1)^* \emptyset(\emptyset + 1)^* 1(\emptyset + 1)^*
 \]

So putting these cases together, we get the following:
\[
(\emptyset + 1)^* 1(\emptyset + 1)^* \emptyset(\emptyset + 1)^* \emptyset(\emptyset + 1)^*
\]
\[
+ (\emptyset + 1)^* \emptyset(\emptyset + 1)^* 1(\emptyset + 1)^* \emptyset(\emptyset + 1)^*
\]
\[
+ (\emptyset + 1)^* \emptyset(\emptyset + 1)^* \emptyset(\emptyset + 1)^* 1(\emptyset + 1)^*
\]

Solution: There are three possibilities for how such a string can begin:

- Start with 00, then any number of 0s, then 1, then anything.
- Start with 01, then any number of 1s, then 0, then anything.
- Start with 1, then a substring with exactly two 0s, then anything.

All together:
\[
000^*1(\emptyset + 1)^* + 011^*\emptyset(\emptyset + 1)^* + 11^*\emptyset1^*\emptyset(\emptyset + 1)^*
\]

Or equivalently:
\[
(000^*1 + 011^*\emptyset + 11^*\emptyset1^*\emptyset)(\emptyset + 1)^*
\]

Solution (clever):
\[
(\emptyset + 1)^* (101^*\emptyset + 010^* + 01^*\emptyset1)(\emptyset + 1)^*
\]

*9. All strings \(w \) such that in every prefix of \(w \), the number of 0s and 1s differ by at most 2.

Solution:
\[
(\emptyset(01)^*1 + 1(10)^*0)^* \cdot (\varepsilon + \emptyset(01)^*0 + 1(10)^*(1 + \varepsilon))
\]
All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 000000 is not.)

Solution: Every string in $\{0,1\}^*$ alternates between (possibly empty) blocks of 0s and individual 1s; that is, $\{0,1\}^* = (0^*1)^*0^*$. Trivially, every 000 substring is contained in some block of 0s. Our strategy is to consider which blocks of 0s contain an even or odd number of 000 substrings.

Let X denote the set of all strings in 0^* with an even number of 000 substrings. We easily observe that $X = \{0^n | n = 1 \text{ or } n \text{ is even}\} = 0 + (00)^*$. In particular, observe that $\varepsilon \in X$.

Let Y denote the set of all strings in 0^* with an odd number of 000 substrings. We easily observe that $Y = \{0^n | n > 1 \text{ and } n \text{ is odd}\} = 000(00)^*$.

We immediately have $0^* = X + Y$ and therefore $\{0,1\}^* = ((X + Y)1)^*(X + Y)$.

Finally, let L denote the set of all strings in $\{0,1\}^*$ with an even number of 000 substrings. A string $w \in \{0,1\}^*$ is in L if and only if an odd number of blocks of 0s in w are in Y; the remaining blocks of 0s are all in X.

$$L = ((X1)^*Y1(X1)^*Y1)^* \cdot (X1)^*Y1(X1)^*$$

This expression consists of two parts. The first part $((X1)^*Y1(X1)^*Y1)^*$ describes all strings that contain an even number of blocks of 0's in Y, whose last block of 0s (if any) is in Y, and where every block of 0s is followed by a 1. The second part $(X1)^*Y1(X1)^*$ describes all strings that contain exactly one block of 0's in Y. (Because $\varepsilon \in X$, this expression includes strings that start or end with 1.) Intuitively, we are breaking any string in L just after the 1 immediately after the second-to-last block in Y.

Plugging in the expressions for X and Y gives us a complete regular expression for L:

$$(((0 + (00)^*)1)^* \cdot 000(00)^*1 \cdot ((0 + (00)^*)1)^* \cdot 000(00)^*1)^* \cdot (((0 + (00)^*)1)^* \cdot 000(00)^* \cdot (1(0 + (00)^*))^*)^*$$

Whew!