Give regular expressions for each of the following languages over the alphabet \{0, 1\}.

1. All strings containing the substring 000.

Solution:
\[(0 + 1)^*000(0 + 1)^*\]

2. All strings not containing the substring 000.

Solution:
\[(1 + 01 + 001)^*(\varepsilon + 0 + 00)\]

Solution:
\[(\varepsilon + 0 + 00)(1(\varepsilon + 0 + 00))^*\]

3. All strings in which every run of 0s has length at least 3.

Solution:
\[(1 + 0000^*)^*\]

Solution:
\[(\varepsilon + 1)((\varepsilon + 0000^*)1)^*(\varepsilon + 0000^*)\]

4. All strings in which every substring 000 appears after every 1.

Solution:
\[(1 + 01 + 001)^*0^*\]

5. All strings containing at least three 0s.

Solution:
\[(0 + 1)^*0(0 + 1)^*0(0 + 1)^*0(0 + 1)^*\]

Solution (clever):
\[1^*01^*01^*0(0 + 1)^* \text{ or } (0 + 1)^*01^*01^*0^*\]

6. Every string except 000. [Hint: Don't try to be clever.]

Solution: Every string \(w \neq 000\) satisfies one of three conditions: Either \(|w| < 3\), or \(|w| = 3\) and \(w \neq 000\), or \(|w| > 3\). The first two cases include only a finite number of strings, so we just list them explicitly, each case on one line. The expression on the last line includes all strings of length at least 4.

\[
\varepsilon + 0 + 1 + 00 + 01 + 10 + 11 \\
+ 001 + 010 + 011 + 100 + 101 + 110 + 111 \\
+ (1 + 0)(1 + 0)(1 + 0)(1 + 0)(1 + 0)^*
\]

Solution (clever):
\[\varepsilon + 0 + 00 + (1 + 01 + 001 + 000(1 + 0))(1 + 0)^*\]
7. All strings \(w \) such that in every prefix of \(w \), the numbers of 0s and 1s differ by at most 1.

Solution: Equivalently, strings in which every even-length prefix has the same number of 0s and 1s — \((01 + 10)^*(0 + 1 + \epsilon)\)

*8. All strings containing at least two 0s and at least one 1.

Solution: There are three possibilities for how the three required symbols are ordered:

- Contains a 1 before two 0s: \((0 + 1)^* 1(0 + 1)^* 0(0 + 1)^* 0(0 + 1)^*\)
- Contains a 1 between two 0s: \((0 + 1)^* 0(0 + 1)^* 1(0 + 1)^* 0(0 + 1)^*\)
- Contains a 1 after two 0s: \((0 + 1)^* 0(0 + 1)^* 0(0 + 1)^* 1(0 + 1)^*\)

So putting these cases together, we get the following:

\[
(0 + 1)^* 1(0 + 1)^* 0(0 + 1)^* 0(0 + 1)^* + (0 + 1)^* 0(0 + 1)^* 1(0 + 1)^* 0(0 + 1)^* + (0 + 1)^* 0(0 + 1)^* 0(0 + 1)^* 1(0 + 1)^* \]

Solution: There are three possibilities for how such a string can begin:

- Start with 00, then any number of 0s, then 1, then anything.
- Start with 01, then any number of 1s, then 0, then anything.
- Start with 1, then a substring with exactly two 0s, then anything.

All together: \(000^* 1(0 + 1)^* + 011^* 0(0 + 1)^* + 11^* 01^* 0(0 + 1)^*\)

Or equivalently: \((000^* 1 + 011^* 0 + 11^* 01^* 0)(0 + 1)^*\)

Solution (clever): \((0 + 1)^* (101^* 0 + 011^* 0 + 01^* 01)(0 + 1)^*\)

*9. All strings \(w \) such that in every prefix of \(w \), the number of 0s and 1s differ by at most 2.

Solution: \((0(01)^* 1 + 1(10)^* 0)^* \cdot (\epsilon + 0(01)^*(0 + \epsilon) + 1(10)^*(1 + \epsilon))\)
10. All strings in which the substring \(000\) appears an even number of times.
(For example, \(001000\) and \(0000\) are in this language, but \(00000\) is not.)

Solution: Every string in \(\{0,1\}^*\) alternates between (possibly empty) blocks of \(0\)s and individual \(1\)s; that is, \(\{0,1\}^* = (0^*1)^*0^*\). Trivially, every \(000\) substring is contained in some block of \(0\)s. Our strategy is to consider which blocks of \(0\)s contain an even or odd number of \(000\) substrings.

- Let \(X\) denote the set of all strings in \(\{0,1\}^*\) with an even number of \(000\) substrings. In particular, we have \(\varepsilon \in X\). We easily observe that \(X = \{0^n \mid n = 1 \text{ or } n \text{ is even}\}\) and thus
 \[
 X = 0 + (00)^*
 \]

- Let \(Y\) denote the set of all strings in \(\{0,1\}^*\) with an odd number of \(000\) substrings. We easily observe that \(Y = \{0^n \mid n > 1 \text{ and } n \text{ is odd}\}\) and thus
 \[
 Y = 000(00)^*
 \]

- Let \(Z\) denote the set of strings that starts with a run of \(0\)s in \(Y\), ends with a different run of \(0\)s in \(Y\), and otherwise every run of \(0\)s is in \(X\). The set of non-empty runs of \(1\)s is \(11^*\), so we immediately have.
 \[
 Z = Y11^*(X11^*)Y
 \]

In fact, we can simplify this expression to \(Z = Y11^*(X11^*)Y\) because \(\varepsilon \in X\). Plugging in our earlier expressions for \(X\) and \(Y\) gives us

\[
Z = 000(00)^*1 \cdot (0 + (00)^*)1 \cdot 000(00)^*
\]

- Finally, let \(L\) denote the set of all strings in \(\{0,1\}^*\) with an even number of \(000\) substrings.
 \[
 L = 1^*((X + Z)11^*)(X + Z)1^*
 \]

The subexpression \((X + Z)\) matches all maximal substrings that start with \(0\), end with \(0\), and have an even number of \(000\) substrings. Any string in \(L\) can be broken into an alternating sequence of runs of \(1\)s and strings in \((X + Z)\). In fact, we can simplify this expression to \(L = ((X + Z)1)^*(X + Z)\) because \(\varepsilon \in X\). Plugging in our earlier expressions for \(X\) and \(Z\) gives us a complete regular expression for \(L\):

\[
L = ((0 + (00)^* + 000(00)^*1 \cdot ((0 + (00)^*)1 \cdot 000(00)^*) \cdot 1)^* \cdot (0 + (00)^* + 000(00)^*1 \cdot ((0 + (00)^*)1 \cdot 000(00)^*)
\]

Whew!