1. Recall the following \textit{kColor} problem: Given an undirected graph \(G \), can its vertices be colored with \(k \) colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from \textsc{3Color} to \textsc{4Color}.

\begin{solution}
Suppose we are given an arbitrary graph \(G \). Let \(H \) be the graph obtained from \(G \) by adding a new vertex \(a \) (called an \textit{apex}) with edges to every vertex of \(G \). I claim that \(G \) is \textit{3}-colorable if and only if \(H \) is \textit{4}-colorable.

\(\implies \) Suppose \(G \) is \textit{3}-colorable. Fix an arbitrary \textit{3}-coloring of \(G \), and call the colors “red”, “green”, and “blue”. Assign the new apex \(a \) the color “plaid”. Let \(uv \) be an arbitrary edge in \(H \).

- If both \(u \) and \(v \) are vertices in \(G \), they have different colors.
- Otherwise, one endpoint of \(uv \) is plaid and the other is not, so \(u \) and \(v \) have different colors.

We conclude that we have a valid \textit{4}-coloring of \(H \), so \(H \) is \textit{4}-colorable.

\(\impliedby \) Suppose \(H \) is \textit{4}-colorable. Fix an arbitrary \textit{4}-coloring; call the apex’s color “plaid” and the other three colors “red”, “green”, and “blue”. Each edge \(uv \) in \(G \) is also an edge of \(H \) and therefore has endpoints of two different colors. Each vertex \(v \) in \(G \) is adjacent to the apex and therefore cannot be plaid.

We conclude that by deleting the apex, we obtain a valid \textit{3}-coloring of \(G \), so \(G \) is \textit{3}-colorable.

We can easily transform \(G \) into \(H \) in polynomial time by brute force.
\end{solution}
(b) Prove that k\textsc{Color} problem is NP-hard for any $k \geq 3$.

\textbf{Solution (direct)}: The lecture notes include a proof that 3\textsc{Color} is NP-hard. For any integer $k > 3$, I'll describe a direct polynomial-time reduction from 3\textsc{Color} to k\textsc{Color}.

Let G be an arbitrary graph. Let H be the graph obtained from G by adding $k - 3$ new vertices $a_1, a_2, \ldots, a_{k-3}$, each with edges to every other vertex in H (including the other a_i's). I claim that G is 3-colorable if and only if H is k-colorable.

\Rightarrow Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G. Color the new vertices $a_1, a_2, \ldots, a_{k-3}$ with $k - 3$ new distinct colors. Every edge in H is either an edge in G or uses at least one new vertex a_i; in either case, the endpoints of the edge have different colors. We conclude that H is k-colorable.

\Leftarrow Suppose H is k-colorable. Each vertex a_i is adjacent to every other vertex in H, and therefore is the only vertex of its color. Thus, the vertices of G use only three distinct colors. Every edge of G is also an edge of H, so its endpoints have different colors. We conclude that the induced coloring of G is a proper 3-coloring, so G is 3-colorable.

Given G, we can construct H in polynomial time by brute force.

\textbf{Solution (induction)}: Let k be an arbitrary integer with $k \geq 3$. Assume that j\textsc{Color} is NP-hard for every integer $3 \leq j < k$. There are two cases to consider.

- If $k = 3$, then k\textsc{Color} is NP-hard by the reduction from 3\textsc{Sat} in the lecture notes.

- Suppose $k > 3$. The reduction in part (a) directly generalizes to a polynomial-time reduction from $(k-1)$\textsc{Color} to k\textsc{Color}: To decide whether an arbitrary graph G is $(k-1)$-colorable, add an apex and ask whether the resulting graph is k-colorable. The induction hypothesis implies that $(k-1)$\textsc{Color} is NP-hard, so the reduction implies that k\textsc{Color} is NP-hard.

In both cases, we conclude that k\textsc{Color} is NP-hard.
2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Prove that deciding whether a graph contains a tonian cycle is NP-hard.

Solution (duplicate the graph): I'll describe a polynomial-time reduction from HamiltonianCycle. Let G be an arbitrary graph. Let H be a graph consisting of two disjoint copies of G, with no edges between them; call these copies G_1 and G_2. I claim that G has a Hamiltonian cycle if and only if H has a tonian cycle.

\implies Suppose G has a Hamiltonian cycle C. Let C_1 be the corresponding cycle in G_1. C_1 contains exactly half of the vertices of H, and thus is a tonian cycle in H.

\impliedby On the other hand, suppose H has a tonian cycle C. Because there are no edges between the subgraphs G_1 and G_2, this cycle must lie entirely within one of these two subgraphs. G_1 and G_2 each contain exactly half the vertices of H, so C must also contain exactly half the vertices of H, and thus is a Hamiltonian cycle in either G_1 or G_2. But G_1 and G_2 are just copies of G. We conclude that G has a Hamiltonian cycle.

Given G, we can construct H in polynomial time by brute force.

Solution (add n new vertices): I'll describe a polynomial-time reduction from HamiltonianCycle. Let G be an arbitrary graph, and suppose G has n vertices. Let H be a graph obtained by adding n new vertices to G, but no additional edges. I claim that G has a Hamiltonian cycle if and only if H has a tonian cycle.

\implies Suppose G has a Hamiltonian cycle C. Then C visits exactly half the vertices of H, and thus is a tonian cycle in H.

\impliedby On the other hand, suppose H has a tonian cycle C. This cycle cannot visit any of the new vertices, so it must lie entirely within the subgraph G. Since G contains exactly half the vertices of H, the cycle C must visit every vertex of G, and thus is a Hamiltonian cycle in G.

Given G, we can construct H in polynomial time by brute force.
To think about later:

3. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if the total weight of edges in the cycle is at least half of the total weight of all edges in G. Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

Solution (two new vertices): I’ll describe a polynomial-time a reduction from the Hamiltonian path problem. Let G be an arbitrary undirected graph (without edge weights). Let H be the edge-weighted graph obtained from G as follows:

- Add two new vertices s and t.
- Add edges from s and t every other vertex (including each other).
- Assign weight 1 to the edge st and weight 0 to every other edge.

The total weight of all edges in H is 1. Thus, a Hamiltonian cycle in H is heavy if and only if it contains the edge st. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a Hamiltonian path.

\Rightarrow First, suppose G has a Hamiltonian path from vertex u to vertex v. By adding the edges vs, st, and tu to this path, we obtain a Hamiltonian cycle in H. Moreover, this Hamiltonian cycle is heavy, because it contains the edge st.

\Leftarrow On the other hand, suppose H has a heavy Hamiltonian cycle. This cycle must contain the edge st, and therefore must visit all the other vertices in H contiguously. Thus, deleting vertices s and t and their incident edges from the cycle leaves a Hamiltonian path in G.

Given G, we can easily construct H in polynomial time by brute force.

Solution (smartass): I’ll describe a polynomial-time a reduction from the standard Hamiltonian cycle problem. Let G be an arbitrary graph (without edge weights). Let H be the edge-weighted graph obtained from G by assigning each edge weight 0. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a Hamiltonian path.

\Rightarrow Suppose G has a Hamiltonian cycle C. The total weight of C is at least half the total weight of all edges in H, because $0 \geq 0/2$. So C is a heavy Hamiltonian cycle in H.

\Leftarrow Suppose H has a heavy Hamiltonian cycle C. By definition, C is also a Hamiltonian cycle in G.

Given G, we can easily construct H in polynomial time by brute force.