1. Describe context-free grammars for the following languages over the alphabet $\Sigma = \{0, 1\}$. For each non-terminal in your grammars, describe in English the language generated by that non-terminal.

(a) $\{0^a10^b10^c \mid a + b = c\}$

Solution: Any string $w = 0^a10^b10^{a+b} \in L$ can be decomposed into substrings as $w = 0^a1 \cdot (0^b10^b) \cdot 0^a$. The non-terminal B generates the parenthesized substring 0^b10^b; the starting non-terminal then generates the outer 0s.

- $S \rightarrow 0S0 \mid 1B$
- $B \rightarrow 0B0 \mid 1$

Rubric: 2 points = 1 for grammar + 1 for justification.
(b) \(\{ w \in (0 + 1)^+ \mid \#(0, w) \leq 2 \cdot \#(1, w) \} \)

Solution (dropping 0s): Let \(L^\leq \) be the target language. We modify the grammar for the language \(L^\geq := \{ w \in (0 + 1)^+ \mid \#(0, w) = 2 \cdot \#(1, w) \} \) described in the lab solutions:

\[
S \to \epsilon \mid SS \mid 00S1 \mid 1S00 \mid 0S1S0
\]

Dropping any number of 0s from any string in \(L^\geq \) leaves a string in \(L^\leq \); moreover, *every* string in \(L^\leq \) can be obtained from some string in \(L^\geq \) by dropping 0s.

Thus, we can transform the grammar for \(L^\geq \) into a grammar for \(L^\leq \) by dropping 0s from the right side of every production in all possible ways:

\[
S \to \epsilon \mid SS \mid 00S1 \mid 0S1 \mid S1 \mid 1S00 \mid 1S0 \mid 1S \mid 0S1S0 \mid 0S1S \mid S1S
\]

The last three productions in this grammar are redundant, so we can remove them. For example, we don’t need the production \(S \to S1S \), because other productions give us the derivation \(S \Rightarrow SS \Rightarrow 1S \).

\[
S \to \epsilon \mid SS \mid 00S1 \mid 0S1 \mid S1 \mid 1S00 \mid 1S0 \mid 1S \mid 0S1S0
\]

If we add the trivial production \(S \to 1 \) (replacing the derivation \(S \Rightarrow 1S \Rightarrow 1 \)), we can remove two more redundant productions.

\[
S \to \epsilon \mid 1 \mid SS \mid 00S1 \mid 0S1 \mid 1S00 \mid 1S0 \mid 1S \mid 0S1S0
\]

\[\blacksquare\]

Solution (0, -1, or less): For any string \(w \), let \(\Delta(w) = \#(0, w) - 2 \cdot \#(1, w) \).

\[
L \to \epsilon \mid ZL \mid ML \mid 1L \quad \Delta \leq 0
\]

\[
Z \to \epsilon \mid ZZ \mid 00Z1 \mid 1Z00 \mid 0Z1Z0 \quad \Delta = 0
\]

\[
M \to ZM \midMZ \mid 0Z1 \mid 1Z0 \quad \Delta = -1
\]

The non-terminals in this grammar respectively generate the following languages.

\[
L = \{ w \in (0 + 1)^+ \mid \Delta(w) \leq 0 \} \quad \text{“Less or equal”}
\]

\[
Z = \{ w \in (0 + 1)^+ \mid \Delta(w) = 0 \} \quad \text{“Zero”}
\]

\[
M = \{ w \in (0 + 1)^+ \mid \Delta(w) = -1 \} \quad \text{“Minus one”}
\]

Our target language is \(L \). A grammar for \(Z \) appears in the Lab 4½ solutions. For any string \(w \), we have \(\Delta(w) = -1 \) (that is, \(w \in M \)) if and only if at least one of the following conditions holds:

- \(w \) has a non-empty proper prefix in \(Z \), and the rest of \(w \) is in \(M \).
- \(w \) has a non-empty proper prefix in \(M \), and the rest of \(w \) is in \(Z \).
- \(\Delta(x) > 0 \) for *every* non-empty proper prefix \(x \) of \(w \). Then \(w = 0z1 \) for some string \(z \in Z \).
• $\Delta(x) < -1$ for every non-empty proper prefix x of w. Then $w = 1z\emptyset$ for some string $z \in Z$.

Finally, $\Delta(w) \leq 0$ if and only if at least one of the following conditions holds:

• w is empty.
• w has a non-empty prefix in Z, and the rest of w is in L. (This includes the case $w \in Z$.)
• w has a non-empty prefix in M, and the rest of w is in L. (This includes the case $w \in M$.)
• $\Delta(x) \leq -2$ for every non-empty prefix x of w. (In particular, $\Delta(w) \leq -2$.) Then $w = 1y$ for some string y with $\Delta(y) \leq 0$.

Rubric: 4 points = 2 for grammar + 2 for justification. These solutions have more detail than necessary for full credit.
(c) Strings in which the substrings 00 and 11 appear the same number of times. For example, 1100011 ∈ L because both substrings appear once, but 01000011 \∉ L. [Hint: This is the complement of the language you considered in HW2.]

Solution (counting): Let \((#(11, w) \) denote the number of times 11 appears as a substring of \(w \), and let \(#(1^*, w) \) denote the number of runs of 1s in \(w \). For example:

\[
#(11, 111100111101) = 5 \quad #(1^*, 111100111101) = 3
\]

Our grammar is based on the observation that each 1 in a binary string is the start of a 11 substring, except for the last 1 in every run; thus, symbolically, we have

\[
#(11, w) = #(1, w) - #(1^*, w).
\]

Symmetrically, \(#(00, w) = #(0, w) - #(0^*, w) \). But because runs of 0s and 1s in any binary string \(w \) alternate, \(#(0^*, w) \) and \(#(1^*, w) \) always differ by at most 1.

Further case analysis implies that \(L \) contains a binary string \(w \) if and only if one of the following conditions holds:

- \(w = \varepsilon \)
- \(w \) starts with 0 and ends with 1, and \(#(0, w) = #(1, w) \)
- \(w \) starts with 1 and ends with 0, and \(#(0, w) = #(1, w) \)
- \(w \) starts with 0 and ends with 0, and \(#(0, w) = #(1, w) + 1 \). (In this case, dropping the final 0 leaves a string with equal 0s and 1s.)
- \(w \) starts with 1 and ends with 1, and \(#(0, w) = #(1, w) - 1 \). (In this case, dropping the final 1 leaves a string with equal 0s and 1s.)

In the following grammar, each nonterminal \(_E_\) generates strings that start with symbol \(a \), end with symbol \(z \), and have equal numbers of 0s and 1s. Missing subscripts indicate that we don’t care about the first and/or last symbol. The nonterminals \(_E_0 \) and \(_E_1 \) never appear on the right side of a production, so we can ignore them. In each case, we derive the production rules from the grammar for \(L(E) = \{ w \mid #(0, w) = #(1, w) \} \) described in the lecture notes.

\[
S \rightarrow \varepsilon \mid 0 \mid 1 \mid _E 0 \mid _E 1 \mid 1 E 0 \mid 1 E 1
\]

\[
E \rightarrow \varepsilon \mid EE \mid 0 E 1 \mid 1 E 0
\]

\[
_E \rightarrow _E E \mid 0 E 1
\]

\[
_E \rightarrow _E E \mid 1 E 0
\]

\[
E_0 \rightarrow EE_0 \mid 1 E 0
\]

\[
E_1 \rightarrow EE_1 \mid 0 E 1
\]

\[
_E_0 \rightarrow _E E_1 \mid 0 E 1
\]

\[
_E_0 \rightarrow _E E_0 \mid 1 E 0
\]

\[
_E_1 \rightarrow _E E_1 \mid 0 E 1
\]

\[
_E_1 \rightarrow _E E_0 \mid 1 E 0
\]
Solution (simpler counting): For any string w, let $\Delta(w) = \#(\emptyset, w) - \#(1, w)$. The case analysis in the previous solution implies that our target language L contains a binary string w if and only if one of the following conditions holds:
- $w = \varepsilon$
- w starts with 0 and ends with 1, and $\Delta(w) = 0$
- w starts with 1 and ends with 0, and $\Delta(w) = 0$
- w starts with 0 and ends with 0, and $\Delta(w) = 1$
- w starts with 1 and ends with 1, and $\Delta(w) = -1$

In the third case, either $w = \emptyset$ or $w = \emptyset x \emptyset$ for some string x with $\Delta(x) = -1$. If $w = \emptyset x \emptyset$, then $\Delta(\emptyset) = +1$ and $\Delta(x) = 0$, so w has a prefix with $\Delta = 0$, and the shortest such prefix must end with 1; it follows that $w = \emptyset y 1 z \emptyset$ where $\Delta(y) = 0$ and $\Delta(z) = 0$. Similar analysis applies to the fourth case above.

We conclude with the following grammar for L, where E generates all strings with $\Delta = 0$.

$$S \rightarrow \varepsilon | 0 | 1 | 0 E 1 | 1 E 0 | 0 E 1 E 0 | 1 E 0 E 1$$

$$E \rightarrow \varepsilon | E E | 0 E 1 | 1 E 0$$

Solution (brute-force terminators): Sorry, this is really ugly, but it was the first solution I found.

Our grammar treats the last symbol in each run of 0s or 1s as a distinct symbol; we indicate this distinction by writing these symbols in blue with hats ($\hat{0}$ or $\hat{1}$). For example, we would write the string 11000111110111 as $1\hat{1}000\hat{0}1111\hat{0}1111$. With this marking, every binary string matches the regular expression $(0^*\hat{0} + \varepsilon)(1^*\hat{1}0^*\hat{0})^*(1^*\hat{1} + \varepsilon)$.

Let L' be the set of all strings in $\{0, 1, \hat{0}, \hat{1}\}^*$ that match this regular expression and have equal numbers of red 0s and red 1s. We construct a grammar for L by first constructing a grammar for L', and then ignoring the colors in the terminal alphabet (but not in the non-terminal names).

The following grammar generates L', using a modification of the grammar $S \rightarrow \varepsilon | SS | 0 S 1 | 1 S 0$ for all binary strings with equal 0s and 1s. Specifically, each of the 16 non-terminals S_{ab} generates the strings in L' that start with a and end with b.

$$S \rightarrow \varepsilon | S_{\emptyset \emptyset} | S_{\emptyset 1} | S_{1 \emptyset} | S_{1 1} | S_{\emptyset \hat{0}} | S_{\emptyset \hat{1}} | S_{\hat{0} \emptyset} | S_{\hat{0} \hat{1}} | S_{\hat{1} \emptyset} | S_{\hat{1} \hat{1}}$$

$$S_{\emptyset \emptyset} \rightarrow S_{\emptyset \hat{0}} | S_{\emptyset \hat{1}} | \hat{0}$$

$$S_{\emptyset 1} \rightarrow S_{\emptyset \hat{1}} | S_{\hat{0} \hat{1}}$$

$$S_{1 \emptyset} \rightarrow S_{\hat{0} \hat{0}} | S_{1 \hat{0}}$$

$$S_{1 1} \rightarrow S_{\hat{1} \hat{1}} | S_{1 \hat{0}}$$

$$S_{\hat{0} \emptyset} \rightarrow S_{\hat{0} \hat{0}} | S_{\hat{1} \hat{0}}$$

$$S_{\hat{0} \hat{1}} \rightarrow S_{\hat{0} \hat{0}} | S_{1 \hat{1}}$$

$$S_{\hat{1} \emptyset} \rightarrow S_{\hat{1} \hat{0}} | S_{\hat{1} \hat{0}}$$

$$S_{\hat{1} \hat{1}} \rightarrow S_{\hat{1} \hat{0}} | S_{\hat{1} \hat{0}}$$
In the first three groups of productions, we peel off as many blue bits as possible from either end of the string; most the real work is done in the last group. In the productions for S_{00} and S_{11}, we reduce the number of cases by splitting off the shortest non-empty prefix with equal 0s and 1s.

Rubric: 4 points = 2 for grammar + 2 for justification. These solutions have more detail than necessary for full credit.
2. Let \(\text{inc}: \{0,1\}^* \rightarrow \{0,1\}^* \) denote the \textit{increment} function, which transforms the binary representation of an arbitrary integer \(n \) into the binary representation of \(n+1 \), truncated to the same number of bits.

Let \(L \subseteq \{0,1\}^* \) be an arbitrary regular language. Prove that \(\text{inc}(L) = \{\text{inc}(w) \mid w \in L\} \) is also regular.

\textbf{Solution (forward NFA)}: Let \(M = (Q,s,A,\delta) \) be a DFA that accepts \(L \). We construct an NFA \(M' = (Q',s',A',\delta') \) that accepts \(\text{inc}(L) \) as follows:

\[
Q' = Q \times \{0,1\} \cup \{s'\}
\]

\(s' \) is an explicit state in \(Q' \)

\[
A' = \{(q,1) \mid q \in Q\}
\]

\[
\delta(s', \varepsilon) = \{(s,0), (s,1)\}
\]

\[
\delta(s', a) = \emptyset \quad \text{for all } a \in \Sigma
\]

\[
\delta'(q,0,0) = \{(\delta(q,0),0)\} \quad \text{for all } q \in Q
\]

\[
\delta'(q,0,1) = \{(\delta(q,1),0), (\delta(q,0),1)\} \quad \text{for all } q \in Q
\]

\[
\delta'(q,1,0) = \{(\delta(q,1),1)\} \quad \text{for all } q \in Q
\]

\[
\delta'(q,b,\varepsilon) = \emptyset \quad \text{for all } q \in Q \text{ and } b \in \{0,1\}
\]

Our machine \(M' \) reads a string of the form \(x10^n \) or \(0^n \) and passes the \textit{decremented} string \(x01^n \) or \(1^n \) to \(M \). State \((q,0) \) indicates that \(M \) is in state \(q \) and \(M' \) is reading the initial prefix \(x \); state \((q,1) \) indicates that \(M \) is in state \(q \) and \(M' \) is flipping bits before passing them to \(M \). When \(M' \) begins or reads a \(1 \), it guesses whether to switch from passing bits directly to \(M \) to inverting them.

\textbf{Rubric}: 10 points: standard language transformation rubric.

\textbf{Solution (reverse DFA)}: Recall from class that the reversal \(\text{rev}(L) = \{\text{rev}(w) \mid w \in L\} \) of any regular language \(L \) is regular.

For any string \(w \), define \(\text{linc}(w) := \text{rev}(\text{rev}(\text{inc}(w))) \), and for any language \(L \), define

\[
\text{linc}(L) := \{\text{linc}(w) \mid w \in L\} = \text{rev}(\text{rev}(\text{inc}(L))).
\]

The name \(\text{linc} \) is short for “left increment”; this is the increment function for binary strings whose least significant bits are on the left. For any integer \(n \geq 0 \) and any string \(x \), we have \(\text{linc}(1^n0x) = 0^n1x \) and \(\text{linc}(1^n) = 0^n \).

I claim that for any regular language \(L \), the language \(\text{linc}(L) \) is also regular. This claim immediately implies that \(\text{inc}(L) = \text{rev}(\text{linc}(\text{rev}(L))) \) is regular, solving the homework problem.

To prove my claim, let \(M = (Q,s,A,\delta) \) be an arbitrary DFA that accepts \(L \). We
construct a DFA \(M' = (Q', s', A', \delta') \) that accepts \(\text{linc}(L) \) as follows:

\[
Q' = Q \times \{0, 1\} \\
s' = (s, 1) \\
A' = A \times \{0, 1\}
\]

\[
\delta'((q, 1), 0) = (\delta(q, 1), 1) \quad \text{for all } q \in Q \\
\delta'((q, 1), 1) = (\delta(q, 0), 0) \quad \text{for all } q \in Q \\
\delta'((q, 0), 0) = (\delta(q, 0), 0) \quad \text{for all } q \in Q \\
\delta'((q, 0), 1) = (\delta(q, 1), 0) \quad \text{for all } q \in Q
\]

The transition function can be more concisely written as

\[
\delta'((q, b), a) = (\delta(q, a \oplus b), a \land b)
\]

for all \(q \in Q \) and all \(a, b \in \{0, 1\} \). Intuitively, our new machine \(M' \) reads a string of the form \(0^n1x \) or \(0^n \) and passes the decremented string \(1^n0x \) or \(1^n \) to \(M \). Each state \((q, b) \) indicates that \(M \) is in state \(q \) and the current “borrow” bit is \(b \). Equivalently, \(b = 1 \) if and only if \(M' \) has not yet read a \(0 \).

Rubric: 10 points = 2 for defining \(\text{linc} \) + 5 points for \(\text{linc} \) transformation (standard language transformation rubric, scaled) + 1 for reversal transformation (from lecture/notes) + 2 for remaining details. No credit for assuming/building a DFA that “reads its input from right to left”; that’s not how DFAs are defined.
3. Prove that if L and L' are regular languages, then $\text{shuffles}(L, L')$ is also a regular language.

Solution: Let L_1 and L_2 be arbitrary regular languages. Let $M_1 = (Q_1, S_1, A_1, \delta_1)$ be an arbitrary DFA that accepts L_1, and let $M_2 = (Q_2, S_2, A_2, \delta_2)$ be an arbitrary DFA that accepts L_2. We build a new NFA $M = (Q, S, A, \delta)$ that accepts $\text{shuffles}(L_1, L_2)$ using a modified product construction:

$$Q = Q_1 \times Q_2$$
$$S = (s_1, s_2)$$
$$A = A_1 \times A_2$$
$$\delta((q_1, q_2), a) = \{(\delta_1(q_1, a), q_2), (q_1, \delta_2(q_2, a))\}$$

Intuitively, M runs the given machines M_1 and M_2 simultaneously. At each step, M nondeterministically chooses whether to pass the next input symbol to M_1 or to M_2. Finally, when the input is consumed, M accepts if and only if both M_1 and M_2 are in accepting states.

Rubric: 10 points: standard language transformation rubric