1. (a) A subset S of vertices in an undirected graph G is \textbf{half-independent} if each vertex in S is adjacent to \textit{at most one} other vertex in S. Prove that finding the size of the largest half-independent set of vertices in a given undirected graph is NP-hard.

\textbf{Solution:} We prove this problem NP-hard by reduction from the maximum independent set problem.

Let $G = (V, E)$ be an arbitrary undirected graph, and let $n = |V|$. We construct a graph H by attaching a new vertex with degree 1 to every vertex in G. More formally, let $V' = \{v' \mid v \in V\}$ be a set of n new vertices; we call v' the \textit{clone} of v. Then the vertices of H are $V \cup V'$ and the edges of H are $E \cup \{vv' \mid v \in V\}$.

Now I claim, for any integer $k \geq 0$, that G has an independent set of size k if and only if H has a half-independent set of size $n + k$.

\[
\implies\text{For any independent set } S \text{ in } G, \text{ the set } V' \cup S \text{ is a half-independent set in } H \text{ moreover, } |S \cup V'| = n + |S|.
\]

\[
\Leftarrow\text{Let } S \text{ be an arbitrary half-independent set in } H \text{ such that } |S| \geq n. \text{ We define a new half-independent set } S' \text{ as follows:}
\]

\[
S' = (S \cup V') \setminus \{v \in S \cap V \mid u \in S \cap V \text{ for some } uv \in E\}
\]

That is, we construct S' by adding every clone to S, and then removing any non-clone in S with a non-clone neighbor in S. If S contains both an original vertex v and its clone v', then S contains no other neighbor of v, so S' also contains both v and v'. Otherwise, S contains at most one of v and v', and S' contains v' (and possibly v). It follows that $|S'| \geq |S|$.

The set $S' \setminus V'$ is an independent set in G. Moreover, $|S' \setminus V'| = |S'| - n \geq |S| - n$. Thus, if $|S| = n + k$, then $|S' \setminus V'| \geq k$. If necessary, we can discard vertices from $S' \setminus V'$ to get an independent set of size exactly k.

Thus, to compute the size of the largest independent set in G, we can compute the size of largest half-independent set in H and subtract n. We can construct H from G by brute force in polynomial time. \hfill \blacksquare

\textbf{Rubric:} 5 points, standard reduction rubric (scaled)
(b) A subset S of vertices in an undirected graph G is sort-of-independent if if each vertex in S is adjacent to at most 374 other vertices in S. Prove that finding the size of the largest sort-of-independent set of vertices in a given undirected graph is NP-hard.

Solution: Again, we prove this problem NP-hard by reduction from the maximum independent set problem.

Let $G = (V, E)$ be an arbitrary undirected graph, and let $n = |V|$. We construct a graph H by attaching a new clique of 373 vertices to every vertex in G. More formally, let $W = V \times \{1, 2, \ldots, 373\}$, and let us write v_i to denote the pair (v, i). Then $H = (V', E')$ where

$$V' = V \cup W$$

$$E' = E \cup \{vv_i \mid v \in V \text{ and } i \in \{1, 2, \ldots, 373\}\}$$

$$\cup \{v_i v_j \mid v \in V \text{ and } i, j \in \{1, 2, \ldots, 373\}\}$$

We call vertices in V original vertices, and we call each vertex v_i a clone of v.

The rest of the proof is nearly identical to part (a). For any integer $k \geq 0$, that G has an independent set of size k if and only if H has a sort-of-independent set of size $373n + k$.

\Rightarrow For any independent set S in G, the set $S \cup W$ is a half-independent set in H; moreover, $|S \cup W| = 373n + |S|$.

\Leftarrow Let S be an arbitrary sort-of-independent set in H such that $|S| \geq n$. We define a new sort-of-independent set S' as follows:

$$S' = (S \cup W) \setminus \{v \in S \cap V \mid u \in S \cap V \text{ for some } uv \in E\}$$

That is, we construct S' by adding every clone to S, and then removing any non-clone in S with a non-clone neighbor in S. If S contains both an original vertex v and all its clones v_i, then S contains no other neighbor of v, so S' also contains both v and all its clones. Otherwise, S contains at most 373 vertices among v and its clones, and S' contains all 373 cones of v (and possibly v itself). It follows that $|S'| \geq |S|$.

The set $S' \setminus V'$ is an independent set in G. Moreover, $|S' \setminus V'| = |S'| - 373n \geq |S| - 373n$. Thus, if $|S| = 373n + k$, then $|S' \setminus V'| \geq k$. If necessary, we can discard vertices from $S' \setminus V'$ to get an independent set of size exactly k.

Thus, to compute the size of the largest independent set in G, we can compute the size of largest sort-of-independent set in H and subtract $373n$. We can construct H from G by brute force in polynomial time. ■

Rubric: 5 points, standard reduction rubric (scaled)
2. Fix an alphabet $\Sigma = \{0, 1\}$. Prove that the following problems are NP-hard.

(a) Given a regular expression R over the alphabet Σ, is $L(R) \neq \Sigma^*$?

Solution: We describe a polynomial-time reduction from 3Sat. Let Φ be an arbitrary 3CNF boolean formula. Let n be the number of variables in Φ and let k be the number of clauses. We construct a regular expression R of length $O(nk)$ as follows.

Let $\Phi = C_1 \land C_2 \land \cdots \land C_k$, where each C_k is a clause. For each clause C_i and each variable x_j, we define a regular expression r_{ij} as follows:

- If C_i contains the variable x_j, then $r_{ij} = 0$.
- If C_i contains the negated variable \bar{x}_j, then $r_{ij} = 1$.
- Otherwise, $r_{ij} = (0 + 1)$.

For each index i, let $R_i = r_{i1}r_{i2}\cdots r_{in}$. The regular expression R_i encodes all assignments to the n variables that do not satisfy C_i. For example, if $n = 8$, we would transform the clause $(x_3 + \bar{x}_7 + \bar{x}_4)$ into the regular expression $$(0 + 1)(0 + 1)01(0 + 1)1(0 + 1)$$

Let $R = R_1 + R_2 + \cdots + R_k$. The regular expression R encodes all assignments to the n variables that do not satisfy the formula Φ. In particular, Φ is satisfiable if and only if $L(R) \neq (0 + 1)^n$.

Finally, let $R_<$ be a regular expression for the set of all strings of length smaller than n, and let $R_>$ be a regular expression for the set of all strings of length larger than n. For example:

$$R_\lt = (0 + 1 + \varepsilon)(0 + 1 + \varepsilon)\cdots (0 + 1 + \varepsilon)$$

$$R_\gt = (0 + 1)^n(0 + 1)(0 + 1)\cdots (0 + 1)$$

Then Φ is satisfiable if and only if $L(R_\lt + R + R_\gt) \neq (0 + 1)^n$. The final regular expression $R_\lt + R + R_\gt$ has length $O(n^2 + nk)$, and it can be constructed from Φ in $O(n^2 + nk)$ time by brute force.

Solution: We describe a polynomial-time reduction from 4COLOR. Let $G = (V, E)$ be an arbitrary graph; arbitrarily index the vertices as $V = \{1, 2, \ldots, n\}$. We construct a regular expression of length $O(n^3)$ whose language is not Σ^* if and only if G is 4-colorable, as follows.

Intuitively, we represent each possible 4-coloring of G as a string of length $2n$, where each pair of bits represents the color of one vertex. For each edge ij,

where without loss of generality $i < j$, let R_{ij} be the regular expression

\[
(\emptyset + 1)^{2(i-1)} \emptyset (\emptyset + 1)^{2(j-i-1)} \emptyset \emptyset (\emptyset + 1)^{2(n-j)} + (\emptyset + 1)^{2(i-1)} \emptyset (\emptyset + 1)^{2(j-i-1)} \emptyset (\emptyset + 1)^{2(n-j)} + (\emptyset + 1)^{2(i-1)} \emptyset (\emptyset + 1)^{2(j-i-1)} \emptyset (\emptyset + 1)^{2(n-j)} + (\emptyset + 1)^{2(i-1)} \emptyset (\emptyset + 1)^{2(j-i-1)} \emptyset (\emptyset + 1)^{2(n-j)},
\]

where A^k is shorthand for the concatenation of k copies of A. R_{ij} encodes the set of all 4-colorings of G in which vertices i and j have the same color. Each expression R_{ij} has length $O(n)$.

Now let R be the sum of the expressions R_{ij}, over all edges ij. Then $L(R)$ is the set of all strings encoding bad 4-colorings of G. In particular, G is 4-colorable if and only if $L(R) \neq (\emptyset + 1)^{2n}$.

Finally, let $R_<$ be a regular expression for the set of all strings of length smaller than $2n$, and let $R_>$ be a regular expression for the set of all strings of length larger than $2n$. For example,

\[
R_< = (\emptyset + 1 + \varepsilon)^{2n-1}
\]
\[
R_> = (\emptyset + 1)^*(\emptyset + 1)^{2n},
\]

where again A^k is shorthand for the concatenation of k copies of S.) Then G is 4-colorable if and only if $L(R_< + R + R_>) \neq (\emptyset + 1)^*$. The final regular expression $R_< + R + R_>$ has length $O(n^3)$, and it can be constructed from Φ in $O(n^3)$ time by brute force.

\[\text{Rubric: 5 points: standard poly-time reduction rubric (scaled). These are not the only correct solutions.}\]

(b) Given an NFA M over the alphabet Σ, is $L(M) \neq \Sigma^*$?

Solution: We can reduce from the problem in part (a) using Thompson’s algorithm, which converts any regular expressions into equivalent NFA in polynomial time.

\[\text{Rubric: 5 points: standard poly-time reduction rubric (scaled). Yes, this is enough for full credit.}\]
3. Let $\langle M \rangle$ denote the encoding of a Turing machine M (or if you prefer, the Python source code for the executable code M). Recall that $x \cdot y$ denotes the concatenation of strings x and y. Prove that the following language is undecidable.

$$\text{SELFSELFACCEPT} := \{ \langle M \rangle \mid M \text{ accepts the string } \langle M \rangle \cdot \langle M \rangle \}$$

Note that Rice’s theorem does not apply to this language.

Solution (diagonalization): Suppose to the contrary that there is a Turing machine SSA that decides SELFSELFACCEPT. For any Turing machine M, we have

$$SSA \text{ accepts } \langle M \rangle \iff M \text{ accepts } \langle M \rangle \langle M \rangle.$$

Let \overline{SSA} be the Turing machine obtained from SSA by swapping its accept and reject states. For any Turing machine M, we have

$$\overline{SSA} \text{ rejects } \langle M \rangle \iff M \text{ accepts } \langle M \rangle \langle M \rangle.$$

Finally, let SSA^* be the Turing machine that deletes the second half of its input string and then passes control to SSA. For any Turing machine M, we have

$$SSA^* \text{ rejects } \langle M \rangle \langle M \rangle \iff M \text{ accepts } \langle M \rangle \langle M \rangle.$$

In particular, if we set $M = SSA^*$, we have

$$SSA^* \text{ rejects } \langle SSA^* \rangle \langle SSA^* \rangle \iff SSA^* \text{ accepts } \langle SSA^* \rangle \langle SSA^* \rangle.$$

We have a contradiction; SSA must not exist.

Rubric: Standard diagonalization rubric.

Solution (reduction from HALT): For the sake of argument, suppose there is an algorithm $\text{DECIDESELFSELFACCEPT}$ that correctly decides the language SELFSELFACCEPT. Then we can solve the halting problem as follows:

$$\text{DECIDEHALT}(\langle M, w \rangle):$$

Encode the following Turing machine M':

$$M'(x):$$

run M on input w

return True

return $\text{DECIDESELFSELFACCEPT}(\langle M' \rangle)$

We prove this reduction correct as follows:

$$\iff$$ Suppose M halts on input w. Then M' accepts every input string x. In particular, M' accepts the string $\langle M \rangle \langle M \rangle$. So $\text{DECIDESELFSELFACCEPT}$ must accept the encoding $\langle M' \rangle$. We conclude that DECIDEHALT correctly accepts the encoding $\langle M, w \rangle$.

Suppose M does not halt on input w. Then M' diverges on every input string x. In particular, M' does not accept the string $\langle M \rangle \langle M \rangle$. So $\text{DE} \text{CIDESELFSELFAC} \text{CEPT}$ must reject the encoding $\langle M' \rangle$. We conclude that $\text{DE} \text{CIDEHALT}$ correctly rejects the encoding $\langle M, w \rangle$.

In both cases, $\text{DE} \text{CIDEHALT}$ is correct. But that's impossible, because HALT is undecidable. We conclude that the algorithm $\text{DE} \text{CIDESELFSELFAC} \text{CEPT}$ does not exist. ■

Rubric: Standard undecidability reduction rubric. This is not the only correct reduction.

<table>
<thead>
<tr>
<th>Standard rubrics for undecidability proofs. For problems out of 10 points:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonalization:</td>
</tr>
<tr>
<td>+ 4 for correct wrapper Turing machine</td>
</tr>
<tr>
<td>+ 6 for self-contradiction proof (= 3 for \Leftarrow + 3 for \Rightarrow)</td>
</tr>
<tr>
<td>Reduction:</td>
</tr>
<tr>
<td>+ 4 for correct reduction</td>
</tr>
<tr>
<td>+ 3 for "if" proof</td>
</tr>
<tr>
<td>+ 3 for "only if" proof</td>
</tr>
<tr>
<td>Rice’s Theorem:</td>
</tr>
<tr>
<td>+ 4 for positive Turing machine</td>
</tr>
<tr>
<td>+ 4 for negative Turing machine</td>
</tr>
<tr>
<td>+ 2 for other details (including using the correct variant of Rice’s Theorem)</td>
</tr>
</tbody>
</table>