Every RSO has officers — pres, treasurer,...

President's Club
↓
Non-President's Club can't be an RSO!

Barber [Russell]

Haircut Day

Licensed barber — cuts anyone's hair

DON'T EXIST

Cantor's Theorem: Any set \(X \)

Any function \(F: X \rightarrow 2^X \)

\(F \) is not surjective

\(\exists S \in 2^X \) s.t. \(F(x) \neq S \) for all \(x \in X \)

Proof: Call \(x \in X \) happy if \(x \in F(x) \)

sad \(x \notin F(x) \)

Let \(S = \) all sad elements of \(X = \{ x | x \notin F(x) \} \)

Suppose for argument \(F \) is surjection

Then \(\exists y \in X \) s.t. \(F(y) = S \)

For all \(x \): \(x \in S \iff x \in F(y) \iff x \notin F(x) \)

So \(y \notin F(y) \iff y \notin F(x) \)
SelfReject = ∃<M> | M rejects <M>

Suppose there is a program ST2 s.t.
Given another source <M>
If M rejects <M> ST2 returns YES
If M accepts <M> or hangs on <M>
ST2 returns NO

ST2 accepts <M> ⇔ M rejects <M>
Set M = ST2
ST2 accepts <ST2> ⇔ ST2 rejects <ST2>
Contradiction!

SelfAccept = ∃<M> | M accepts <M>

Suppose there is a machine SA that decides SelfAccept
Build new machine SA':

SA'(w):
ok ← SA(w)
return ~ok

SA accepts <M> ⇔ M does not accept <M>
SA' accepts <SA'> ⇔ SA' does not accept <SA'>
Halting Problem: Given \(\langle M \rangle \) and \(w \)

Does \(M \) halt if \(w \) is the input to \(M \)?

\[\text{Collatz}(n): \]
- if \(n = 1 \) halt
- else if \(n \) even \(\text{Collatz}(n/2) \)
- else \(\text{Collatz}(3n+1) \)

Suppose \(H \) decides \(\text{HALT} = \{ \langle M \rangle \cdot w \mid M \text{ halts on } w \} \)

\[\text{SH}(x): \]

- first check \(x = \langle M \rangle \) for some \(M \)
- else reject
- if \(H(x, x) \)
 - return \(\text{true} \)
- else return \(\text{false} \)

\(\text{Self Halts} = \{ \langle M \rangle \mid M \text{ halts on } \langle M \rangle \} \)

Suppose there is a machine \(SH \)

that decides \(\text{Self Halts} \)

Build new machine \(SA' \):

\[\text{SH}'(w): \]

- run \(\text{SH}(w) \)
- return \(\text{false} \)

\(\text{SH}' \) accepts \(\langle M \rangle \) \iff \(M \) does not accept \(\langle M \rangle \)

\(\text{SH}' \) accepts \(\langle SA' \rangle \) \iff \(SA' \) does not accept \(\langle SA' \rangle \)