NP-hardness (again, for the last time)

NP-hard = no polynomial-time algorithm (morally)

To prove X is NP-hard:
1. Reduce known NP-hard problem Y to X:
 - Describe an algorithm to transform arbitrary
 instance y of Y to special instance
 x of X so that

 - If y is a "good" instance of Y,
 then x is a "good" instance of X
 - If y is a "bad" instance of Y
 then x is a "bad" instance of X

![Diagram]

Typical proof:
- Show that any certificate that y is good for Y
 becomes a certificate that x is good for X
- Show that any certificate that x is good for X
 must come from a certificate that y is good for Y

This is the hard part!

Reduction must force structure on certificates for X
Pebbling Problem

Pebbling is a solitaire game played on an undirected graph G, where each vertex has zero or more pebbles. A single pebbling move consists of removing two pebbles from a vertex v and adding one pebble to an arbitrary neighbor of v. (Obviously, the vertex v must have at least two pebbles before the move.) The PebbleDestruction problem asks, given a graph $G = (V; E)$ and a pebble count $p(v)$ for each vertex v, whether there is a sequence of pebbling moves that removes all but one pebble. Prove that PebbleDestruction is NP-complete.

First, I show that it is in NP since I can verify the solution in polynomial time, tracing back the pebble count from just one pebble.

Next, what are some ideas on which problems to use as the basis for a polynomial-time reduction?

1 Answer

Suppose in a graph G there is one pebble on each vertex except one vertex v with $p(v) = 2$, then above pebbling problem has solution on G iff G has a Hamiltonian circuit. It’s easy to check if there is a Hamiltonian circuit, then there is a solution for pebbling on G. On the other hand, in any solution to the pebbling, we should start from vertex v. Suppose that we visit some vertex u twice such that this u is the first vertex which visited twice in G by pebbling algorithm, then we have a loop which starts from u and ends in u and finally because u is the first for making loop then we have $p(u) = 1$ so we cannot continue pebbling algorithm. Indeed if the algorithm has a solution then we have $u = v$ which means we found a Hamiltonian circuit which starts in v.

Choosing what to reduce From:
- Finding large subset?
- Finding small subset?
- Finding subset with specific properties?
- Labeling/classifying?
- Long sequence?
- Balancing/packing?
- 3 something?
- Give up?

Max Clique
Max Ind Set
Min Vertex Cover
SAT
Coloring
Hamiltonian something
(3) Partition
3 SAT/3 Color/3 Partition
3SAT/Circuit SAT
Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

CIRCUITSat: Given a boolean circuit, are there any input values that make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that touch every edge in G?

MINSETCOVER: Given a collection of subsets S_1, S_2, \ldots, S_m of a set S, what is the size of the smallest subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S_1, S_2, \ldots, S_m of a set S, what is the size of the smallest subset of S that intersects every subset S_i?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

HAMILTONIANPATH: Given graph G (either directed or undirected), is there a path in G that visits every vertex exactly once?

HAMILTONIANCYCLE: Given a graph G (either directed or undirected), is there a cycle in G that visits every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in G?

LONGESTPATH: Given a graph G (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in G?

STEINERTREE: Given an undirected graph G with some of the vertices marked, what is the minimum number of edges in a subtree of G that contains every marked vertex?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of $3n$ positive integers, can X be partitioned into n three-element subsets, all with the same sum?

INTEGERLINEARPREDICTING: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^n$ and $c \in \mathbb{Z}^d$, compute $\max \{ c \cdot x | Ax \leq b, x \geq 0, x \in \mathbb{Z}^d \}$.

FEASIBLEILP: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points $\max \{ x \in \mathbb{Z}^d | Ax \leq b, x \geq 0 \}$ is empty.

DRAUGHTS: Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

SUPERNARIOSBROTHERS: Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle?

STEAMEDHAMS: Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?
Reduce 3SAT to HamCycle

variable gadgets

clause gadgets

\((a \lor b \lor c) \land (b \lor \bar{c} \lor \bar{d}) \land (\bar{a} \lor c \lor d) \land (a \lor \bar{b} \lor \bar{d})\)

\(a = b = d = \text{TRUE},\ c = \text{FALSE}\)
Classic Nintendo Games are (Computationally) Hard

Greg Aloupis* Erik D. Demaine† Alan Guo‡‡ Giovanni Viglietta§

February 10, 2015
Solving the Rubik’s Cube Optimally is NP-complete

Erik D. Demaine
MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA
edemaine@mit.edu

Sarah Eisenstat
MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

Mikhail Rudoy¹
MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA
mrudoy@gmail.com
draughts
- Flying kings!
- Captured pieces stay to end of move
- Forced capture max # pieces
\[O(n^3) \text{ edges} \]
\[\rightarrow O(n^4) \text{ crossing gadgets} \]
So need \(\geq n^3 \) black pieces in each vertex gadget use \(\Theta(n^4) \)

So width = \(\Theta(n^5) \), area = \(\Theta(n^{10}) \)

\text{polynomial!}