Directed Acyclic Graph

O(V+E) time

Strongly Connected

∀v, w ∈ V : if v → w and w → v for all u ≠ v

Directed graphs
reachability isn't symmetric

DFS(v):

mark v
PREVISIT(v)
if w is unmarked
parent(w) = v
DFS(w)
POSTVISIT(v)

DFSALL(G):

Preprocessing (G)
For all vertices v
unmark v
For all vertices v
if v unmarked
DFS(v)
DAG

DFS(v):
- mark v
- PREVISIT(v)
 - For each edge v -> w
 - if w is unmarked
 - parent[w] = v
 - DFS(w)
- POSTVISIT(v)

Memoize(x):
- if value(x) is undefined
 - init value(x)
 - for all subproblems y of x
 - Memoize(y)
 - update value(x) to value(y)
- finalize value(x)
 - return value(x)

Memoized recursion IS DFS in DAG
Dynamic programming IS top sort + iterative traversal
DFS(v):
- `mark v`
- For each edge `v→w`
 - if `w` is unmarked
 - `parent(w) = v`
 - `DFS(w)`
 - `v.done ← clock`
 - `clock ← clock + 1`

DFSALL(G):
- `Clock ≤ 0`
- For all vertices `v`
 - `unmark v`
 - `Add vertex s`
 - `for all v ∈ V`
 - `add s → v`
 - `DFS(s)`

Lemma: After DFSALL, if `G` is a dag for all `v→w`
- `v.done > w.done`

Proof: Let `t` be the vertex s.t. `t.done = 0`

Claim: `t` has no outedges. t is a sink.
- Suppose `t → z`
 - `DFS(t)` calls `DFS(z)` unless `z` is marked
 - `z` is not already marked
 - `call DFS(z) → z.done < ?`
 - `t.done < ? + 1 > z.done ≥ 0`
 - `t.done > 0` ✗
 - `z` is already marked, and `z.done` undefined.
 - `z` can reach `t`
 - `t` can reach `z`
 - cycle! ✗
Longest Path in a DAG

Input: DAG $G=(V,E)$ $l : E \rightarrow \mathbb{R}$ edge length

Want: total length of longest path in G

$V_0 \rightarrow V_1 \rightarrow \ldots \rightarrow V_k$

Alg:
1. Top sort DAG

$LLP(i) = \text{length of longest path in } G \text{ starting at vertex } i$

$LLP(i) = \begin{cases} \infty, & i \notin V \\ \max \{ l(i, j) + LLP(j) \mid i \rightarrow j \} & \text{o/w} \\ \max \phi = 0 \end{cases}$

$O(V + E)$