Mille viae ducunt homines per saecula Romam.
[A thousand roads lead men forever to Rome.]
— Alain de Lille, *Liber Parabolarum* (1175)

I study my Bible as I gather apples.
First I shake the whole tree, that the ripest might fall.
Then I climb the tree and shake each limb,
and then each branch and then each twig,
and then I look under each leaf.
— attributed to Martin Luther (c. 1500)

Thus you see, most noble Sir, how this type of solution bears little relationship to mathematics, and I do not understand why you expect a mathematician to produce it, rather than anyone else, for the solution is based on reason alone, and its discovery does not depend on any mathematical principle. Because of this, I do not know why even questions which bear so little relationship to mathematics are solved more quickly by mathematicians than by others.
— Leonhard Euler, describing the Königsburg bridge problem in a letter to Carl Leonhard Gottlieb Ehler (April 3, 1736)
Figure 5.5. Two drawings of the same disconnected planar graph with 13 vertices, 19 edges, and two components.

\[
F_n = \begin{cases}
0 & \text{if } n = 0, \\
1 & \text{if } n = 1, \\
F_{n-1} + F_{n-2} & \text{otherwise},
\end{cases}
\]

\[
Edit(i, j) = \begin{cases}
i & \text{if } j = 0 \\
j & \text{if } i = 0 \\
\min \left\{ \begin{array}{l}
\text{Edit}(i - 1, j) + 1, \\
\text{Edit}(i, j - 1) + 1, \\
\text{Edit}(i - 1, j - 1) + [A[i] \neq B[j]]
\end{array} \right\} & \text{otherwise}
\end{cases}
\]
Figure 5.10. An adjacency list for our example graph.

Figure 5.12. An adjacency matrix for our example graph.
<table>
<thead>
<tr>
<th>Space</th>
<th>Standard adjacency list (linked lists)</th>
<th>Fast adjacency list (hash tables)</th>
<th>Adjacency matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Theta(V + E)$</td>
<td>$\Theta(V + E)$</td>
<td>$\Theta(V^2)$</td>
</tr>
<tr>
<td>Test if $uv \in E$</td>
<td>$O(1 + \min{\deg(u), \deg(v)}) = O(V)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Test if $u \rightarrow v \in E$</td>
<td>$O(1 + \deg(u)) = O(V)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>List v’s (out-)neighbors</td>
<td>$\Theta(1 + \deg(v)) = O(V)$</td>
<td>$\Theta(1 + \deg(v)) = O(V)$</td>
<td>$\Theta(V)$</td>
</tr>
<tr>
<td>List all edges</td>
<td>$\Theta(V + E)$</td>
<td>$\Theta(V + E)$</td>
<td>$\Theta(V^2)$</td>
</tr>
<tr>
<td>Insert edge uv</td>
<td>$O(1)$</td>
<td>$O(1)^*$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Delete edge uv</td>
<td>$O(\deg(u) + \deg(v)) = O(V)$</td>
<td>$O(1)^*$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

WhateverFirstSearch(s):
- put s into the bag
- while the bag is not empty
 - take v from the bag
 - if v is unmarked
 - mark v
 - for each edge vw
 - put w into the bag

WhateverFirstSearch(s):
- put (s, s) in bag
- while the bag is not empty
 - take (p, v) from the bag
 - if v is unmarked
 - mark v
 - $\text{parent}(v) \leftarrow p$
 - for each edge vw
 - put (v, w) into the bag

Bag: stores a set of vertices
- insert
- take
- out

- **(*)**
- **(†)**
- **(***)**
WFSAll(G):
for all vertices \(v \)
 unmark \(v \)
for all vertices \(v \)
 if \(v \) is unmarked
 WhateverFirstSearch(\(v \))

COUNTAndLABEL(G):
\[
count \leftarrow 0
\]
for all vertices \(v \)
 unmark \(v \)
for all vertices \(v \)
 if \(v \) is unmarked
 \[
 count \leftarrow count + 1
 \]
 LABELOne(\(v, count \))
return count

LABELOne(\(v, count \)):
while the bag is not empty
 take \(v \) from the bag
 if \(v \) is unmarked
 mark \(v \)
 \[
 comp(v) \leftarrow count
 \]
 for each edge \(vw \)
 put \(w \) into the bag