Why are we here?

Theoretical computer science

What can be computed?
... quickly? How?
... under resource constraints?
or can't?

Computers are stupid.
People are clever. Clever is bad.

Today: Strings

Definition: A string is either
- nothing
- \((a,x)\) where \(a \in \Sigma\) “symbol”
 where \(x\) is a string.

“empty string” \(\varepsilon\)
\(a \cdot x \quad ax\)

STRING

\((\Sigma, \varepsilon, \cdot, (\cdot)^{\cdot}, \varepsilon, (\cdot)^{\cdot})\)

set of all strings over \(\varepsilon\) \(\rightarrow \varepsilon^*\)
Length - “# of symbols”

\[|w| = \begin{cases}
0 & \text{if } w = \varepsilon \\
1 + |x| & \text{if } w = ax
\end{cases} \]

Concatenation - “write one after the other”

\((\text{FOOT}) \bullet \text{BALL} = (\text{FOOTBALL}) \)

\[w \cdot x = \begin{cases}
x & \text{if } w = \varepsilon \\
\emptyset \cdot (y \cdot x) & \text{if } w = ay
\end{cases} \]

\[3 \cdot 3 = 9 \]

\[3 \cdot \text{BALL} = \text{BALL} \quad \text{FOOT} \cdot 3 = \text{FOOT} \]

\[|w \cdot x| = |w| + |x| \quad \text{for all strings } w \text{ and } x \]

Proof:

Let \(w \) and \(x \) be arbitrary strings.

Assume for all strings \(y \) shorter than \(w \) that \(|y \cdot x| \leq |y| + |x| \)

There are two cases:

- If \(w = \varepsilon \)

\[|w \cdot x| = |\varepsilon \cdot x| \]
\[= |x| \quad [\text{by definition of } \varepsilon] \]
\[= 0 + |x| \quad [\text{duh}] \]
\[= |\varepsilon| + |x| = |w| + |x| \quad [\text{by def. } |\varepsilon|] \]
If $w = ay$

\[|w \cdot x| = |(ay) \cdot x| \]

\[= |e \cdot (y \cdot x)| \quad \text{[by def. of e]} \]

\[= 1 + |y \cdot x| \quad \text{[by def. of 1]} \]

\[= 1 + |y| + |x| \quad \text{[by IH]} \]

\[= |ay| + |x| = |w| + |x| \quad \text{[by def. of 1]} \]

Therefore $|w \cdot x| = |w| + |x|$