Hinc incipit algorismus. Haec algorismus ars praesens dicitur in qua
talibus indorum fruimur bis quinque figuris 0. 9. 8. 7. 6. 5. 4. 3. 2. 1.

— Friar Alexander de Villa Dei, Carmen de Algorismo, (c. 1220)

We should explain, before proceeding, that it is not our object to consider this program with
reference to the actual arrangement of the data on the Variables of the engine, but simply as
an abstract question of the nature and number of the operations required to be perfomed
during its complete solution.
— Augusta Ada King-Noel, née Byron, Countess of Lovelace,
translator’s notes for Luigi F. Menabrea,
“Sketch of the Analytical Engine invented by Charles Babbage, Esq.” (1843)

You are right to demand that an artist engage his work consciously, but you confuse two
different things: solving the problem and correctly posing the question.

— Anton Chekhov, in a letter to A. S. Suvorin (October 27, 1888)

The moment a man begins to talk about technique that's proof that he is fresh out of ideas.
— Raymond Chandler

CHAPTER O

Introduction

1.1 What is an algorithm?

An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence of
elementary instructions, usually intended to accomplish a specific purpose. For example,
here is an algorithm for singing that annoying song “99 Bottles of Beer on the Wall”, for

arbitrary values of 99:

BoTTLESOFBEER(n):
Fori < ndownto 1
Sing “i bottles of beer on the wall, i bottles of beer,”

Sing “No bottles of beer on the wall, no bottles of beer,”
Sing “Go to the store, buy some more, n bottles of beer on the wall.”

Sing “Take one down, pass it around, i — 1 bottles of beer on the wall.”

The word “algorithm” does not derive, as algorithmophobic classicists might guess,
from the Greek roots arithmos (dpwduéc), meaning “number”, and algos (&hyoc), meaning
“pain”. Rather, it is a corruption of the name of the gth century Persian mathematician

© Copyright 2016 Jeff Erickson.

This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http:/jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

0.

INTRODUCTION

Muhammad ibn Musa al-Khwarizmi (s) y) 933! (w90 (3t bams).! Al-Khwarizmi is
perhaps best known as the writer of the treatise Al-Kitab al-mukhtasar fihisab al-gabr
wa’l-muqabala (Ablaed) 9 jmd| Ol (B jaidnodl wlisdN)?, from which the modern
word algebra derives. In a different treatise, al-Khwarizmi described the modern decimal
system for writing and manipulating numbers—in particular, the use of a small circle or
sifr (_aw) to represent a missing quantity—which had been developed in India several
centuries earlier. This system later became known in Europe as algorism, and its figures
became known in English as ciphers.3

The decimal place-value system was popularized in Europe by the medieval Italian
mathematician and tradesman Leonardo of Pisa, better known as Fibonacci. Thanks in
part to his 1202 book Liber Abaci, written figures began to replace the counting table
(then known as an abacus) as the preferred platform for calculation in Europe in the
early 13th century.* However, ciphers became common in Western Europe only with the
advent of movable type, and truly ubiquitous only after cheap paper became plentiful in
the early 19th century.

The more modern word algorithm is a false cognate with the Greek word arithmos
(and perhaps the previously mentioned algos).> Thus, until very recently, the word
algorithm referred exclusively to pencil-and-paper methods for numerical calculations.
People trained in the fast and reliable execution of these procedures were called—you
guessed it—computers.

1.2 Multiplication
Although they have been a topic of formal academic study for only a few decades,

algorithms have been with us since the dawn of civilization. Descriptions of step-by-step
arithmetic computation are among the earliest examples of written human language.

"Mohammad, father of Adbdulla, son of Moses, the Kwarizmian". Kwarizm is an ancient city, now
called Khiva, in the Khorezm Province of Uzbekistan.

*“The Compendious Book on Calculation by Completion and Balancing”

SFibonacci transliterated ,aw as zephirum in Latin, which became zefiro in Italian, which later evolved
into the modern zero.

4The word calculate derives from the Latin word calculus, meaning “small rock”, referring to the stones
on a counting table. While it is tempting to translate the title Liber Abaci as “The Book of the Abacus”, a
more accurate translation is “The Book of Calculation”. Both before and after Fibonacci, the Italian word
abaco was used to describe anything related to numerical calculation—devices, methods, schools, books,
and so on—much in the same way that “computer science” is used today in English, or as the Chinese
phrase for “operations research” translates literally as “the study of using counting rods”.

5Some medieval sources claimed that the Greek prefix “algo-” meant “art” or “introduction”. Others
claimed that algorithms was invented by a Greek philosopher, or a king of India, or perhaps a king of Spain,
named ‘Algus” or “Algor” or “Argus”. A few, possibly including Dante Alighieri, even identified the inventor
with the mythological Greek shipbuilder and eponymous argonaut. It’s unclear whether these risible claims
were intended to be historical or merely mnemonic.

1.2. Multiplication

Lattice Multiplication

The most familiar method for multiplying large numbers, at least for American stu-
dents, is the lattice algorithm. This algorithm was introduced to Europeans by Fi-
bonacci in Liber Abaci, who learned it from Arabic sources including al-Khwarizmi, who
in turn learned it from Indian sources including Brahmagupta’s 7th-century treatise
Brahmasphutasiddhanta, who most likely learned it from Chinese sources. The oldest
surviving detailed descriptions of the algorithm are in The Mathematical Classic of Sunzi,
written in China in the 5th century.® However, there is some evidence that the lattice
algorithm was known much earlier; the Sumerians recorded multiplication tables on clay
tablets as early as 2600BcC.

The lattice algorithm assumes that the input numbers are represented as explicit
strings of digits; I'll assume here that we’re working in base ten, but the algorithm
generalizes immediately to any other base. The input to the algorithm is a pair of arrays
X[0..m—1]and Y[1..n—1], representing the numbers

X—ZX[l 100 and y= ZY[]] 107,

j=0
Similarly, the output is an array Z[0..m + n — 1] representing the product

m+n—1

g=Xx-y= Z Z[k]- 10%.

k=0

The algorithm uses single-digit multiplication as a primitive operation; in practice, this
operation is performed using a lookup table, either carved into clay tablets, painted on
strips of wood or bamboo, written on paper, stored in read-only memory, or memorized
by the computer. In fact, the entire algorithm can be summarized by the formula

;-n
,_n

m—1n—

(x[i]-Y[j]-10"").
i=0

—.
I
(=)

Different variants of the lattice algorithm evaluate the single-digit partial products
X[i]-Y[j]-10"" in different orders and use different strategies for computing their sum.
For example, in Liber Abaco, Fibonacci describes a variant that considers the mn partial
products in increasing order of significance, as shown in Figure 1.1.

Fibonacci’s algorithm is often executed by storing all the partial products in a
two-dimensional table (often called a “tableau” or “lattice”) and then summing along
the diagonals with appropriate carries, as shown on the right in Figure 1.2. American
elementary-school students are taught to multiply one factor by each digit in the other
factor, writing down all the partial products before adding them up, as shown on the left

The Art of War was written many centuries earlier by a different Sun Zi.

0.

INTRODUCTION

FiBoNaccIMuLTIPLY(X[0..m—1],Y[0..n—1]):
hold < 0
fork<—Oton+m—1
forall i and j such thati+j=k
hold « sum +X[i]-Y[j]
Z[k] < hold mod 10
hold « | hold/10]

return Z[0..m+n—1]

Figure 1.1. Fibonacci's multiplication algorithm, from Liber Abaco (1202)

in Figure 1.2. Both of these variants (and several others) are described and illustrated
side by side in the anonymous 1458 textbook L'Arte dell’Abbaco, also known as the Treviso
Arithmetic, the very first printed mathematics book in the West.

g 9 35 4
93"’[’ 2/ 0/t l
R o
)
B EEXIP 1 AL / i
2 z 6

Figure 1.2. Computing 934 X 314 = 293276 using “long" multiplication (with error-checking by casting out nines)
and "lattice" multiplication, from LArte dellAbbaco (1458).

Both of these variants of the lattice algorithm—and related variants described by
Sunzi, al-Khwarizmi, LArte dell’Abbaco, and many other sources—run in ©(mn) time; in
every variant, the running time is dominated by the number of single-digit multiplications.

Duplation and Mediation

The lattice algorithm is not the oldest multiplication algorithm for which we have direct
recorded evidence. An even older and arguably simpler algorithm, which does not rely
on a place-value representation at all, is sometimes called Russian peasant multiplication,
Ethiopian peasant multiplication, or just peasant multiplication. A variant of this
algorithm was copied into the Rhind papyrus by the Egyptian scribe Ahmes around
1650BC, from a document he claimed was (then) about 350 years old. This algorithm was
still taught in elementary schools in Eastern Europe in the late 20th century; it was also
commonly used by early digital computers that did not implement integer multiplication
directly in hardware.

The peasant multiplication algorithm breaks the difficult task of multiplying arbitrary
numbers into four simpler operations: (1) determining parity (even or odd), (2) addition,
(3) duplation (doubling a number), and (4) mediation (halving a number, rounding

1.2. Multiplication

PeEasanTMurTIPLy(X, y): X Y P rog
Iv’vrl‘l’ﬁe:(; 0 123| +456 = 456
i x is odd 61 +912 = 1368

prod < prod+y 30 1824
x —|x/2] 15 +3648 = 5016
yey+y 7 +7296 = 12312
return prod 3| +14592 = 26904
1| +29184 = 56088

Figure 1.3. Multiplication by duplation and mediation

down).” Of course a full specification of this algorithm requires describing how to
perform those four primitive operations.

The correctness of peasant multiplication follows by induction from the following
simple identity, which holds for all non-negative integers x and y:

0 ifx=0
x-y=1lx/2]-(y+y) if x is even
[x/2]-(y+y)+y ifxisodd

As stated, the algorithm requires [log, x | = O(log x) parity, addition, and mediation
operations, but we can easily improve this to O(logmin{x, y}) by swapping the two
arguments when x > y. Assuming the numbers are represented using any reasonable
place-value notation (like binary, decimal, Babylonian hexagesimal, Egyptian duodecimal,
Roman numeral, Chinese counting rods, bead positions on an abacus, and so on), then
each operation requires at most O(log(xy)) = O(logmax{x, y}) single-digit additions,
so the overall running time of the algorithm is O(logmin{x,y} - logmax{x,y}) =
O(logx -log y).

In other words, this algorithm requires O(mn) time to multiply an m-digit number
by an n-digit number. This algorithm requires (a constant factor!) more paperwork to
execute by hand than the lattice algorithm, but the necessary primitive operations are
arguably easier for humans to perform. In fact, the two algorithms are equivalent when
numbers are represented in binary.

Compass and Straightedge

Classical Greek geometers identified numbers (or more accurately, magnitudes) with
line segments of the appropriate length, which they manipulated through two simple

7The version of this algorithm actually used in ancient Egypt does not use mediation or parity, but it
does use comparisons. To avoid halving, the algorithm pre-computes two tables by repeated doubling: one
containing all the powers of 2 not exceeding x, the other containing the same powers of 2 multiplied by y.
The powers of 2 that sum to x are then found by greedy subtraction, and the corresponding entries in the
other table are added together to form the product.

0.

INTRODUCTION

mechanical tools: the compass and the straightedge. These tools could be used
to construct points, lines, and circles using any sequence of the following primitive
operations:

* Draw the unique line between two distinct points.

* Draw the unique circle centered at one point and passing through another points.

* Find the intersection point of two non-parallel lines.

* Find the intersection points (if any) between a line and a circle.

* Find the intersection points (if any) between two circles.
In practice, Greek geometry students almost certainly drew their constructions on
an abax (8Baf), a table covered in dust or sand.® However, Euclid and other Greek
geometers wrote about compass and straightedge constructions as precise mathematical
abstractions—points are ideal points; lines are ideal lines; and circles are ideal circles.

The following algorithm for multiplying or dividing numbers was popularized (but

almost certainly not discovered) by Euclid about 2500 years ago. The input consists
of four distinct points A,B,C,D, and the goal is to construct a point Z such that
|AZ| = |AC||AD|/|AB|. In particular, if we take |AB| to be the unit length, then the
algorithm computes the product of |AC| and |AD|. Notice that FEuclid first defines a new
primitive operation RIGHTANGLE by (as modern programmers would phrase it) writing
a subroutine.

{(Construct the line perpendicular to £ and passing through P.))
RIGHTANGLE({, P):

Choose a point A€ {

A, B « INTERSECT(CIRCLE(P,A), {)

C,D « INTERSECT(CIRCLE(A, B), CIRCLE(B,A))

return LINE(C, D)

{(Construct a point Z such that |AZ| = |AC||AD|/|AB].))
MurtipLYORDiVIDE(A, B, C, D):
a < RIGHTANGLE(LINE(4, C),A) P
E < INTERSECT(CIRCLE(A, B),)
F « INTERSECT(CIRCLE(A, D), a)
p — RiGHTANGLE(LINE(E, C), F)
y < RIGHTANGLE(f3, F)
return INTERSECT(y, LINE(A, C))

Figure 1.4. Multiplying or dividing using a compass and straightedge.

This algorithm reduces the problem of multiplying two numbers (lengths) into
a series of primitive ruler-and-compass operations. These operations are incredibly

8The numerals 1 through 9 were known in Europe at least two centuries before Fibonacci’s Liber Abaci
as “gobar numerals”, from the Arabic word ghubar (L&) meaning dust, ultimately referring to the Indian
practice of performing arithmetic on tables covered with sand. The Greek word abax is the origin of the
Latin abacus, which also originally referred to a sand table.

1.3. Congressional Apportionment

difficult to implement precisely on a modern digital computer, but this algorithm wasn’t
designed for a digital computer; it was designed for the Platonic Ideal Classical Greek
Mathematician, wielding the Platonic Ideal Compass and the Platonic Ideal Straightedge,
for whom each operation can be performed perfectly in constant time by definition. In
this model of computation, the compass-and-straightedge multiplication algorithm runs
in O(1) “time”.?

1.3 Congressional Apportionment

Here is another real-world example of an algorithm of significant political importance.
Article I, Section 2 of the United States Constitution requires that

Representatives and direct Taxes shall be apportioned among the several States

which may be included within this Union, according to their respective Numbers. . . .

The Number of Representatives shall not exceed one for every thirty Thousand, but

each State shall have at Least one Representative. . ..
Because there are only a finite number of seats in the House of Representatives, exact pro-
portional representation is impossible without either shared or fractional representatives,
neither of which are legal. As a result, over the next several decades, several different
apportionment algorithms were proposed and used to round the fractional solution fairly.
The algorithm actually used today, called the Huntington-Hill method or the method of
equal proportions, was first suggested by Census Bureau statistician Joseph Hill in 1911,
refined by Harvard mathematician Edward Huntington in 1920, adopted into Federal law
(2 U.S.C. §82a and 2b) in 1941, and survived a Supreme Court challenge in 1992.1° The
input array Pop[1..n] stores the populations of the n states, and R is the total number of
representatives. Currently, n = 50 and R = 435. The output array Rep[1..n] stores the
number of representatives assigned to each state.

This pseudocode description assumes a priority queue that supports the operations

NEWPRIORITYQUEUE, INSERT, and EXTRACTMAX. (The actual law doesn’t assume that,

20f course, Greek tradesmen never used this approach to multiply actual numbers for actual real-world
bookkeeping. Greek scholars maintained a clear distinction between arithmetic, which we now call number
theory, and logistic (hoyioTtixdc), which described practical numerical computation. Logistic was considered
a purely practical skill for tradesmen, similar to typing in the 20th century, unworthy of serious scholarly
attention. Perhaps as a result of this intellectual snobbery, there is no surviving record of Greek logistic
algorithms, aside from a few counting boards, multiplication tables, and a passing references to reckoning
with psephoi ({jpou), literally “pebbles”. For example, in 440Bc, Herodotus wrote in his Histories that “The
Greeks write and calculate (Aoyilovtou {¥ipoiot) from left to right; the Egyptians do the opposite. Yet they
say that their way of writing is toward the right, and the Greek way toward the left.”

°Qverruling an earlier ruling by a federal district court, the Supreme Court unanimously held that
any apportionment method adopted in good faith by Congress is constitutional (United States Department
of Commerce v. Montana). The current congressional apportionment algorithm is described in gruesome
detail at the U.S. Census Department web site http://www.census.gov/population/www/censusdata/
apportionment/computing.html. A good history of the apportionment problem can be found at http://www.
thirty-thousand.org/pages/Apportionment.htm. A report by the Congressional Research Service describing
various apportionment methods is available at http://www.rules.house.gov/archives/RL31074.pdf.

http://www.law.cornell.edu/uscode/html/uscode02/usc_sec_02_00000002---a000-.html
http://www.census.gov/population/www/censusdata/apportionment/computing.html
http://www.census.gov/population/www/censusdata/apportionment/computing.html
http://www.thirty-thousand.org/pages/Apportionment.htm
http://www.thirty-thousand.org/pages/Apportionment.htm
http://www.rules.house.gov/archives/RL31074.pdf

0.

INTRODUCTION

AprpPoRTIONCONGRESS(Pop[1..n],R):
PQ < NEWPRIORITYQUEUE
forie—1ton
Repli]l <1
INSERT (PQ, i, Pop[i]/\/i)
R<—R—-1

while R > 0
s « ExTRACTMAX(PQ)
Rep[s] < Rep[s]+1

INSERT (PQ, s, Pop[s] /\/Rep[s] (Rep[s]+ 1))
R«<R-1

return Rep[1..n]

Figure 1.5. The Huntington-Hill apportionment algorithm

of course.) The output of the algorithm, and therefore its correctness, does not depend
at all on how this priority queue is implemented. The Census Bureau uses an unsorted
array, stored in a column of an Excel spreadsheet; you should have learned a more
efficient solution in your undergraduate data structures class.

Similar apportionment algorithms are in common use around the world, in parliamen-
tary elections where the number of seats allocated to each political party is supposed to
be proportional to the number of votes that party receives. However, the Huntington-Hill
method is essentially unique to the United States House of Representatives, thanks
to the constitutional requirement that each state has at least one representative. The
most common apportionment algorithms in the rest of the world, called the D’Hondt
method and the Webster/Sainte-Lagué method, use priorities Pop[s]/(Rep[s]+ 1) and
Pop[s]/(2 - Rep[s] + 1), respectively, in place of the square-root expression used by
Huntington-Hill.

1.4 A Bad Example

As a prototypical example of a sequence of instructions that is not actually an algorithm,
consider Martin’s “algorithm”:!

BECOMEAMILLIONAIREANDNEVERPAYTAXES:
Get a million dollars.
If the tax man comes to the door and says, “You have never paid taxes!”
Say “I forgot.”

Pretty simple, except for that first step; it’s a doozy. A group of billionaire CEOs
(or Silicon Valley venture capitalists) might consider this an algorithm, since for them

Steve Martin, “You Can Be A Millionaire”, Saturday Night Live, January 21, 1978. Also appears on
Comedy Is Not Pretty, Warner Bros. Records, 1979.

1.5. Writing Down Algorithms

the first step is both unambiguous and trivial, but for the rest of us poor slobs, Martin’s
procedure is too vague to be considered an actual algorithm. On the other hand, this is a
perfect example of a reduction—it reduces the problem of being a millionaire and never
paying taxes to the ‘easier’ problem of acquiring a million dollars. We’ll see reductions
over and over again in this class. As hundreds of businessmen and politicians have
demonstrated, if you know how to solve the easier problem, a reduction tells you how to
solve the harder one.

Martin’s algorithm, like some of our previous examples, is not the kind of algorithm
that computer scientists are used to thinking about, because it is phrased in terms of
operations that are difficult for computers to perform. In this class, we’ll focus (almost!)
exclusively on algorithms that can be reasonably implemented on a standard digital
computer. In other words, each step in the algorithm must be something that either is
directly supported by common programming languages (such as arithmetic, assignments,
loops, or recursion) or is something that you've already learned how to do in an earlier
class (like sorting, binary search, or depth first search).

1.5 Writing Down Algorithms

Computer programs are concrete representations of algorithms, but algorithms are not
programs; they should not be described in a particular programming language. The
whole point of this course is to develop computational techniques that can be used in any
programming language. The idiosyncratic syntactic details of C, C++, C#, Java, Python,
Ruby, Erlang, Haskell, OcaML, Scheme, Scala, Clojure, Visual Basic, Smalltalk, Javascript,
Processing, Squeak, Forth, TgX, Fortran, COBOL, INTERCAL, MMIX, LOLCODE, Befunge,
Parseltongue, Whitespace, or Brainfuck are irrelevant in algorithm design; focusing on
them will only distract you from what’s really going on.'2 What we really want is closer
to what you’d write in the comments of a real program than the code itself.

On the other hand, a plain English prose description is usually not a good idea either.
Algorithms have lots of structure—especially conditionals, loops, and recursion—that
are far too easily hidden by unstructured prose. Natural languages like English are full
of ambiguities, subtleties, and shades of meaning, but algorithms must be described
as precisely and unambiguously as possible. More seriously, in non-technical writing,

»This is, of course, a matter of religious conviction. Linguists argue incessantly over the Sapir-Whorf
hypothesis, which states (more or less) that people think only in the categories imposed by their languages.
According to an extreme formulation of this principle, some concepts in one language simply cannot be
understood by speakers of other languages, not just because of technological advancement—How would you
translate “jump the shark” or “blog” into Aramaic?—but because of inherent structural differences between
languages and cultures. For a more skeptical view, see Steven Pinker’s The Language Instinct. There is
admittedly some strength to this idea when applied to different programming paradigms. (What’s the Y
combinator, again? How do templates work? What'’s an Abstract Factory?) Fortunately, those differences
are generally too subtle to have much impact in this class. For a compelling counterexample, see Chris
Okasaki’s thesis/monograph Functional Data Structures and its more recent descendants.

http://99-bottles-of-beer.net/
http://99-bottles-of-beer.net/
http://en.wikipedia.org/wiki/INTERCAL
http://en.wikipedia.org/wiki/MMIX
http://lolcode.com/
http://en.wikipedia.org/wiki/Befunge
https://github.com/jdavis/Parseltongue
http://en.wikipedia.org/wiki/Whitespace_(programming_language)
http://esolangs.org/wiki/Brainfuck
http://cstheory.stackexchange.com/questions/1539/whats-new-in-purely-functional-data-structures-since-okasaki

0.

INTRODUCTION

10

there is natural tendency to describe repeated operations informally: “Do this first, then
do this second, and so on.” But as anyone who has taken one of those “What comes
next in this sequence?” tests already knows, specifying what happens in the first few
iterations of a loop says little or nothing about what happens in later iterations. To make
the description unambiguous, we must explicitly specify the behavior of every iteration.
The stupid joke about the programmer dying in the shower has a grain of truth—*“Lather,
rinse, repeat” is ambiguous; what exactly do we repeat, and until when?

In my opinion, pseudocode is the clearest way to present most algorithms. Pseudocode
uses the structure of formal programming languages and mathematics to break algorithms
into primitive steps; but the primitive steps themselves may be written using mathematics,
pure English, or an appropriate mixture of the two. Well-written pseudocode reveals the
internal structure of the algorithm but hides irrelevant implementation details, making
the algorithm much easier to understand, analyze, debug, implement, and generalize.

The precise syntax of pseudocode is a personal choice, but the overriding goal should
be clarity and precision. Ideally, pseudocode should allow any competent programmer to
implement the underlying algorithm, quickly and correctly, in their favorite programming
language, without understanding why the algorithm works. Here are the guidelines I
follow and strongly recommend:

* Use standard imperative programming keywords (if/then/else, while, for, re-
turn, and the like) and standard notation, like array[index] for array indexing,
function(argument) for function calls, and so on. Use the syntax variable « value for
assignment, to avoid the = versus == (versus ===) problem. Keywords should always
be standard English words: always write “else if” instead of “elif”.

* Indent everything carefully and consistently; the block structure should be visible
from across the room. This rule is especially important for nested loops and
conditionals. Don’t add unnecessary syntactic sugar like braces or begin/end tags;
careful indentation is almost always enough. In other words, indent as though you're
writing in Python.

* Use mnemonic algorithm and variable names. Short variable names are good, but
readability is more important than brevity; except for idioms like loop indices, short
but complete words are better than single letters or opaque abbrvtns. Absolutely
never use pronouns!

* Use standard mathematical notation for standard mathematical things. For example,
write x - y instead of x % y for multiplication; x = y for equality; x > y instead of
x >=y for weak comparison; x mod y instead of x % y for remainder; 4/x instead
of sqrt(x) for square root; a® instead of power(a, b) or a s« b for exponentiation; and
¢ instead of phi for the golden ratio.

* Avoid mathematical notation if English is clearer. For example, “Insert a into X” may
be preferable to “INSERT(X,a)” or “X « X U {a}”.

http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

1.6. Analyzing algorithms

* Each statement should fit on one line, and each line should contain either exactly
one statement or exactly one structuring element (for, while, if). (I sometimes make
an exception for short and similar statements like i <~ i+ 1; j <« j—1; k< 0.)

* Don’t typeset pseudocode in a fixed-width typeface; it’s much harder to read
than normal text. Don’t typeset keywords like “for” or “while” in bold; the syntactic
sugar is not what you want the reader to look at. On the other hand, I do use italics
for variables (following standard mathematical typesetting conventions), SMALL CAPS
for algorithms and constants (like TRUE, FALSE, and NuLL), and a different typeface
for literal strings.

1.6 Analyzing algorithms

It’s not enough just to write down an algorithm and say ‘Behold!” We must also convince
our audience (and ourselves!) that the algorithm actually does what it’s supposed to do,
and that it does so efficiently.

Correctness

In some application settings, it is acceptable for programs to behave correctly most of the
time, on all “reasonable” inputs. Not in this class; we require algorithms that are correct
for all possible inputs. Moreover, we must prove that our algorithms are correct; trusting
our instincts, or trying a few test cases, isn’t good enough. Sometimes correctness is
fairly obvious, especially for algorithms you’ve seen in earlier courses. On the other
hand, “obvious” is all too often a synonym for “wrong”. Many of the algorithms we will
discuss in this course will require extra work to prove correct. Correctness proofs almost
always involve induction. We like induction. Induction is our friend.'3

But before we can formally prove that our algorithm does what it’s supposed to do,
we have to formally state what it’s supposed to do! Algorithmic problems are often
presented using standard English, in terms of real-world objects, not in terms of formal
mathematical objects. It’s up to us, the algorithm designers, to restate these problems in
terms of mathematical objects that we can prove things about—numbers, arrays, lists,
graphs, trees, and so on. We must also determine if the problem statement carries any
hidden assumptions, and state those assumptions explicitly. (For example, in the song
“n Bottles of Beer on the Wall”, n is always a positive integer.'# Restating the problem
formally is not only required for proofs; it is also one of the best ways to really understand
what a problem is asking for. The hardest part of answering any question is figuring out
the right way to ask it!

3If induction is not your friend, you will have a hard time in this course.
*Qccasionally one can hear set theorists singing “X, bottles of beer on the wall, X bottles of beer! Take
one down, pass it around, X, bottles of beer on the wall!”, but they always give up before the song is over.

11

0.

INTRODUCTION

12

It is important to remember the distinction between a problem and an algorithm.
A problem is a task to perform, like “Compute the square root of x” or “Sort these n
numbers” or “Keep n algorithms students awake for t minutes”. An algorithm is a set of
instructions for accomplishing such a task. The same problem may have hundreds of
different algorithms; the same algorithm may solve hundreds of different problems.

Running time

The most common way of ranking different algorithms for the same problem is by how
quickly they run. Ideally, we want the fastest possible algorithm for any particular
problem. In many application settings, it is acceptable for programs to run efficiently
most of the time, on all ‘reasonable’ inputs. Not in this class; we require algorithms that
always run efficiently, even in the worst case.

But how do we measure running time? As a specific example, how long does it take
to sing the song BorTLESOFBEER(n)? This is obviously a function of the input value n,
but it also depends on how quickly you can sing. Some singers might take ten seconds to
sing a verse; others might take twenty. Technology widens the possibilities even further.
Dictating the song over a telegraph using Morse code might take a full minute per verse.
Downloading an mp3 over the Web might take a tenth of a second per verse. Duplicating
the mp3 in a computer’s main memory might take only a few microseconds per verse.

What'’s important here is how the singing time changes as n grows. Singing BOTTLES-
OFBEER(2n) requires about twice much time as singing BoTTLESOFBEER(n), no matter
what technology is being used. This is reflected in the asymptotic singing time ©(n).
We can measure time by counting how many times the algorithm executes a certain
instruction or reaches a certain milestone in the “code”. For example, we might notice
that the word “beer” is sung three times in every verse of BOTTLESOFBEER, so the number
of times you sing “beer” is a good indication of the total singing time. For this question,
we can give an exact answer: BoTTLESOFBEER(n) mentions beer exactly 3n + 3 times.

There are plenty of other songs that have non-trivial singing time. This one is
probably familiar to most English-speakers:

NDAysOrFCHRISTMAS(gifts[2..n]):
fori<—1ton
Sing “On the ith day of Christmas, my true love gave to me”
for j < i down to 2
Sing “j gifts[j]”
ifi>1
Sing “and”
Sing “a partridge in a pear tree.”

The input to NDaysOFCHRISTMAS is a list of n — 1 gifts. It’s quite easy to show
that the singing time is ©(n?); in particular, the singer mentions the name of a gift

Z?:li = n(n+ 1)/2 times (counting the partridge in the pear tree). It’s also easy

1.6. Analyzing algorithms

to see that during the first n days of Christmas, my true love gave to me exactly
> Z}=1j =n(n+1)(n+2)/6 = ©(n®) gifts.

There are many other traditional songs that take quadratic time to sing; examples
include “There Was an Old Lady Who Swallowed a Fly”, “The House that Jack Built”,
“Hole in the Bottom of the Sea”, “The Green Grass Grew All Around”, “Green Grow
the Rushes O”, “The Rattlin’ Bog”, “The Court Of King Caractacus”, “An Austrian Went
Yodeling”, “Hey, Hey, Bo Diddly Bop”, “The Barley-Mow”, “Eh, Cumpari!”, “I have a Song
to Sing, O!”, “Star Trekkin”, “Echad Mi Yode’a”, “Ist das nicht ein Schnitzelbank?”, and
“Minkurinn 1 heensnakofanum”. For further details, consult your nearest preschooler or
Boy Scout. A more modern example is “The TELNET Song” by Guy Steele, which takes
©(2M) time to sing the first n verses; Steele recommended n = 4.

OLpMacDonNaLD(animals[1..n], noise[1..n]):
forie—1ton
Sing “Old MacDonald had a farm, E1 E | O”
Sing “And on this farm he had some animals[i], E/E | 0”
Sing “With a noise[i] noise[i] here, and a noise[i] noise[i] there”
Sing “Here a noise[i], there a noise[i], everywhere a noise[i] noise[i]”
for je~i—1downto1
Sing “noise[j] noise[j] here, noise[j] noise[j] there”
Sing “Here a noise[j], there a noise[j], everywhere a noise[j] noise[j]”
Sing “Old MacDonald had a farm, E1E10.”

AvoueTTE(lapart[1..n]):
Chantez « Alouette, gentille alouette, alouette, je te plumerais. »
pourtoutidelan
Chantez « Je te plumerais lapart[i]. Je te plumerais lapart[i]. »
pour tout jdei—14basdl
Chantez « Et lapart[j]! Et lapart[j]!»
Chantez « Alouette, alouette, 0000000! »
Chantez « Alouette, gentille allouette, alouette, je te plumerais. »

Figure 1.6. Eight brass monkeys from the ancient, sacred, holy crypts of Egypt.

For a slightly less facetious example, consider the algorithm APPORTIONCONGRESS.
Here the running time obviously depends on the implementation of the priority queue
operations, but we can certainly bound the running time as O(N + RI + (R — n)E),
where N denotes the running time of NEWPRIORITYQUEUE, I denotes the running time
of INSERT, and E denotes the running time of ExTrRacTMax. Under the reasonable
assumption that R > 2n (on average, each state gets at least two representatives), we
can simplify the bound to O(N + R(I + E)). The Census Bureau implements the priority
queue using an unsorted array of size n; this implementation gives us N =1 = ©(1) and
E = ©(n), so the overall running time is O(Rn). This is good enough for government
work, but we can do better. Implementing the priority queue using a binary heap (or a
heap-ordered array) gives us N = ©(1) and I =R = O(logn), which implies an overall
running time of O(Rlogn).

13

* ok K

0.

INTRODUCTION

14

Sometimes we are also interested in other computational resources: space, random-
ness, page faults, inter-process messages, and so forth. We can use the same techniques
to analyze those resources as we use to analyze running time. For example, lattice
multiplication of two n-digit numbers requires ©(n?) space if we write down all the
partial products before adding them, but only O(n) space if we add them on the fly.

1.7 A Longer Example: Stable Matching

Arguably this fits better under greedy algorithms.

Every year, thousands of new doctors must obtain internships at hospitals around the
United States. During the first half of the 20th century, competition among hospitals for
the best doctors led to earlier and earlier offers of internships, sometimes as early as the
second year of medical school, along with tighter deadlines for acceptance. In the 1940s,
medical schools agreed not to release information until a common date during their
students’ fourth year. In response, hospitals began demanding faster decisions. By 1950,
hospitals would regularly call doctors, offer them internships, and demand immediate
responses. Interns were forced to gamble if their third-choice hospital called first—accept
and risk losing a better opportunity later, or reject and risk having no position at all.*>

Finally, a central clearinghouse for internship assignments, now called the National
Resident Matching Program (NMRP), was established in the early 1950s. Each year,
doctors submit a ranked list of all hospitals where they would accept an internship, and
each hospital submits a ranked list of doctors they would accept as interns. The NRMP
then computes an assignment of interns to hospitals that satisfies the following stability
requirement. For simplicity, let’s assume that there are n doctors and n hospitals; each
hospital offers exactly one internship; each doctor ranks all hospitals and vice versa; and
finally, there are no ties in the doctors’ and hospitals’ rankings.¢ We say that a matching
of doctors to hospitals is unstable if there are two doctors a and 3 and two hospitals A
and B, such that

* @ is assigned to A, and f is assigned to B;

* a prefers B to A, and B prefers a to f3.

In other words, a and B would both be happier with each other than with their current
assignment. The goal of the Resident Match is a stable matching, in which no doctor or

>The academic job market involves similar gambles, at least in computer science. Some departments
start making offers in February with two-week decision deadlines; other departments don’t even start
interviewing until March; MIT notoriously waits until May, when all its interviews are over, before making
any faculty offers.

1In reality, most hospitals offer multiple internships, each doctor ranks only a subset of the hospitals
and vice versa, and there are typically more internships than interested doctors. And then it starts getting
complicated.

1.7. A Longer Example: Stable Matching

hospital has an incentive to cheat the system. At first glance, it is not clear that a stable
matching exists!
In 1952, the NRMP adopted the “Boston Pool” algorithm to assign interns, so named

because it had been previously used by a regional clearinghouse in the Boston area.

The algorithm is often misattributed to David Gale and Lloyd Shapley, who formally
analyzed the algorithm and first proved that it computes a stable matching in 1962;
Gale and Shapley used the metaphor of college admissions.!” Similar algorithms have
since been adopted for other matching markets, including faculty recruiting in France,
university admission in Germany, public school admission in New York and Boston, billet
assignments for US Navy sailors, and kidney-matching programs. Shapley was awarded
the 2012 Nobel Prize in Economics for his research on stable matching, together with
Alvin Roth, who significantly extended Shapley’s work and used it to develop several
real-world exchanges.

The Boston Pool algorithm proceeds in rounds until every position has been filled.

Each round has two stages:

1. An arbitrary unassigned hospital A offers its position to the best doctor a (according
to the hospital’s preference list) who has not already rejected it.

2. Each doctor ultimately accepts the best offer that she receives, according to her
preference list. Thus, if a is currently unassigned, she (tentatively) accepts the
offer from A. If a already has an assignment but prefers A, she rejects her existing
assignment and (tentatively) accepts the new offer from A. Otherwise, a rejects
the new offer.

For example, suppose four doctors (Dr. Quincy, Dr. Rotwang, Dr. Shephard, and

Dr. Tam, represented by lower-case letters) and four hospitals (Arkham Asylum, Bethlem
Royal Hospital, County General Hospital, and The Dharma Initiative, represented by
upper-case letters) rank each other as follows:

D
s
r
q
t

(i@ Wlv vl N X<
T O" |
OO > W
>0 WY~
©w Q ~ S|

A
t
s
-
q

K »w 3 ~0

Given these preferences as input, the Boston Pool algorithm might proceed as follows:

7The “Gale-Shapley algorithm” is a prime instance of Stigler’s Law of Eponymy: No scientific discovery
is named after its original discoverer. In his 1980 paper that gives the law its name, the statistician Stephen
Stigler claimed that this law was first proposed by sociologist Robert K. Merton. However, similar statements
were previously made by Vladimir Arnol’d in the 1970’s (“Discoveries are rarely attributed to the correct
person.”), Carl Boyer in 1968 (“Clio, the muse of history, often is fickle in attaching names to theorems!”),
Alfred North Whitehead in 1917 (“Everything of importance has been said before by someone who did not
discover it.”), and even Stephen’s father George Stigler in 1966 (“If we should ever encounter a case where
a theory is named for the correct man, it will be noted.”). We will see many other examples of Stigler’s law
in this class.

15

0. INTRODUCTION

16

1. Arkham makes an offer to Dr. Tam.
2. Bedlam makes an offer to Dr. Rotwang.
3. County makes an offer to Dr. Tam, who rejects her earlier offer from Arkham.

Dharma makes an offer to Dr. Shephard. (From this point on, because there is
only one unmatched hospital, the algorithm has no more choices.)

+»

Arkham makes an offer to Dr. Shephard, who rejects her earlier offer from Dharma.
Dharma makes an offer to Dr. Rotwang, who rejects her earlier offer from Bedlam.
Bedlam makes an offer to Dr. Tam, who rejects her earlier offer from County.
County makes an offer to Dr. Rotwang, who rejects it.

Y 0N o

County makes an offer to Dr. Shephard, who rejects it.
10. County makes an offer to Dr. Quincy.

At this point, all pending offers are accepted, and the algorithm terminates with a
matching: (4,s), (B, t), (C,q), (D,r). You can (and should) verify by brute force that
this matching is stable, even though no doctor was hired by her favorite hospital, and no
hospital hired its favorite doctor; in fact, County was forced to hire their least favorite
doctor. This is not the only stable matching for this list of preferences; the matching
(A,1),(B,s),(C,q),(D,t) is also stable.

Running Time

Analyzing the algorithm’s running time is relatively straightforward. Each hospital
makes an offer to each doctor at most once, so the algorithm requires at most n? rounds.
In an actual implementation, each doctor and hospital can be identified by a unique
integer between 1 and n, and the preference lists can be represented as two arrays
DocPref[1..n][1..n] and HosPref[1..n][1..n], where DocPref{ a][r] represents the rth
hospital in doctor o’s preference list, and HosPref[A][r] represents the rth doctor in
hospital A’s preference list. With the input in this form, the Boston Pool algorithm can be
implemented to run in O(n?) time; we leave the details as an easy exercise.

A somewhat harder exercise is to prove that there are inputs (and choices of who
makes offers when) that force 2(n?) rounds before the algorithm terminates. Thus, the
0(n?) upper bound on the worst-case running time cannot be improved; in this case, we
say our analysis is tight.

Correctness

But why is the algorithm correct? How do we know that the Boston Pool algorithm
always computes a stable matching? Gale and Shapley proved correctness as follows. The
algorithm continues as long as there is at least one unfilled position; conversely, when
the algorithm terminates (after at most n? rounds), every position is filled. No doctor
can accept more than one position, and no hospital can hire more than one doctor. Thus,

1.7. A Longer Example: Stable Matching

the algorithm always computes a matching; it remains only to prove that the matching is
stable.

Suppose doctor a is assigned to hospital A in the final matching, but prefers B.

Because every doctor accepts the best offer she receives, a received no offer she liked
more than A. In particular, B never made an offer to a. On the other hand, B made
offers to every doctor they like more than 3. Thus, B prefers 8 to a, and so there is no
instability.

Surprisingly, the correctness of the algorithm does not depend on which hospital
makes its offer in which round. In fact, there is a stronger sense in which the order
of offers doesn’t matter—no matter which unassigned hospital makes an offer in each
round, the algorithm always computes the same matching! Let’s say that a is a feasible
doctor for A if there is a stable matching that assigns doctor a to hospital A.

Lemma o.1. During the Boston Pool algorithm, each hospital A is rejected only by doctors
that are infeasible for A.

Proof: We prove the lemma by induction. Consider an arbitrary round of the Boston
Pool algorithm, in which doctor a rejects one hospital A for another hospital B. The
rejection implies that a prefers B to A. Every doctor that appears higher than a in
B’s preference list has already rejected B and therefore, by the inductive hypothesis, is
infeasible for B.

Now consider an arbitrary matching that assigns a to A. We already established that
a prefers B to A. If B prefers a to its partner, the matching is unstable. On the other
hand, if B prefers its partner to a, then (by our earlier argument) its partner is infeasible,
and again the matching is unstable. We conclude that there is no stable matching that
assigns a to A. O

Now let best(A) denote the highest-ranked feasible doctor on A’s preference list.

Lemma o.1 implies that every doctor that A prefers to its final assignment is infeasible
for A. On the other hand, the final matching is stable, so the doctor assigned to A is
feasible for A. The following result is now immediate:

Corollary o.2. The Boston Pool algorithm assigns best(A) to A, for every hospital A.

Thus, from the hospitals’ point of view, the Boston Pool algorithm computes the
best possible stable matching. It turns out that this matching is also the worst possible
from the doctors’ viewpoint! Let worst(a) denote the lowest-ranked feasible hospital on
doctor a’s preference list.

Corollary 0.3. The Boston Pool algorithm assigns a to worst(a), for every doctor a.

Proof: Suppose the Boston Pool algorithm assigns doctor a to hospital A; we need
to show that A = worst(a). Consider an arbitrary stable matching where A is not
matched with a but with another doctor 3. The previous corollary implies that A prefers

17

0. INTRODUCTION

18

a = best(A) to 3. Because the matching is stable, @ must therefore prefer her assigned
hopital to A. This argument works for any stable assignment, so a prefers every other
feasible match to A; in other words, A = worst(a). O

A subtle consequence of these two corollaries, discovered by Dubins and Freeman
in 1981, is that a doctor can potentially improve her assignment by lying about her
preferences, but a hospital cannot. (However, a set of hospitals can collude so that some
of their assignments improve.) Partly for this reason, the National Residency Matching
Program reversed its matching algorithm in 1998, so that potential residents offer to
work for hospitals in preference order, and each hospital accepts its best offer. Thus,
the new algorithm computes the best possible stable matching for the doctors, and the
worst possible stable matching for the hospitals. In practice, however, this modification
affected less than 1% of the resident’s assignments. As far as I know, the precise effect of
this change on the patients is an open problem.

1.8 Why are we here, anyway?

This class is ultimately about learning two skills that are crucial for all computer scientists.
1. Intuition: How to think about abstract computation.
2. Language: How to talk about abstract computation.

The first goal of this course is to help you develop algorithmic intuition. How do
various algorithms really work? When you see a problem for the first time, how should
you attack it? How do you tell which techniques will work at all, and which ones will
work best? How do you judge whether one algorithm is better than another? How
do you tell whether you have the best possible solution? These are not easy questions;
anyone who says differently is selling something.

Our second main goal is to help you develop algorithmic language. It’s not enough
just to understand how to solve a problem; you also have to be able to explain your
solution to somebody else. I don’t mean just how to turn your algorithms into working
code—despite what many students (and inexperienced programmers) think, “somebody
else” is not just a computer. Nobody programs alone. Code is read far more often than it
is written, or even compiled. Perhaps more importantly in the short term, explaining
something to somebody else is one of the best ways to clarify your own understanding.
As Albert Einstein (or was it Richard Feynman?) apocryphally put it, “You do not really
understand something unless you can explain it to your grandmother.”

Along the way, you’ll pick up a bunch of algorithmic facts—mergesort runs in
©(nlogn) time; the amortized time to search in a splay tree is O(log n); greedy algorithms
usually don’t produce optimal solutions; the traveling salesman problem is NP-hard—but
these aren’t the point of the course. You can always look up mere facts in a textbook or
on the web, provided you have enough intuition and experience to know what to look

Exercises

for. That’s why we let you bring cheat sheets to the exams; we don’t want you wasting
your study time trying to memorize all the facts you've seen.

You’ll also practice a lot of algorithm design and analysis skills—finding useful
examples and counterexamples, developing induction proofs, solving recurrences, using
big-Oh notation, using probability, giving problems crisp mathematical descriptions, and
so on. These skills are incredibly useful, and it’s impossible to develop good intuition and
good communication skills without them, but they aren’t the main point of the course
either. At this point in your educational career, you should be able to pick up most of
those skills on your own, once you know what you’re trying to do.

Unfortunately, there is no systematic procedure—no algorithm—to determine which
algorithmic techniques are most effective at solving a given problem, or finding good
ways to explain, analyze, optimize, or implement a given algorithm. Like many other
activities (music, writing, juggling, acting, martial arts, sports, cooking, programming,
teaching, etc.), the only way to master these skills is to make them your own, through
practice, practice, and more practice. You can only develop good problem-solving skills

by solving problems. You can only develop good communication skills by communicating.

Good intuition is the product of experience, not its replacement. We can’t teach you how
to do well in this class. All we can do (and what we will do) is lay out some fundamental
tools, show you how to use them, create opportunities for you to practice with them, and
give you honest feedback, based on our own hard-won experience and intuition. The
rest is up to you.

Good algorithms are extremely useful, elegant, surprising, deep, even beautiful, but
most importantly, algorithms are fun! I hope you will enjoy playing with them as much
as I do.

Exercises

0. Describe and analyze an efficient algorithm that determines, given a legal arrangement
of standard pieces on a standard chess board, which player will win at chess from the
given starting position if both players play perfectly. [Hint: There is a trivial one-line
solution!]

1. (@) Write (or find) a song that requires ©(n®) time to sing the first n verses.
(b) Write (or find) a song that requires ©(nlogn) time to sing the first n verses.

(c) Write (or find) a song that requires ®(n3/ 2) time to sing the first n verses.

2. Careful readers might complain that our analysis of songs like “n Bottles of Beer on
the Wall” or “The n Days of Christmas” is overly simplistic, because larger numbers
take longer to sing than shorter numbers. We can more accurately estimate singing
time by counting the number of syllables sung, rather than the number of words.

(a) How long does it take to sing “n Bottles of Beer on the Wall”?

19

0.

INTRODUCTION

20

(b) How long does it take to sing “The n Days of Christmas”?

3. The cumulative drinking song “The Barley Mow” has been sung throughout the British
Isles for centuries. The song has many variants; Figure 1.7 conatins pseudolyrics for
one version traditionally sung in Devon and Cornwall, where vessel[i] is the name of
a vessel that holds 2 ounces of beer.s

BARLEYMow(n):

‘Here's a health to the barley-mow, my brave boys,”
‘Here’s a health to the barley-mow!”

”
)

“We'll drink it out of the jolly brown bow/,
‘Here’s a health to the barley-mow!”
"Here's a health to the barley-mow, my brave boys,”
‘Here’s a health to the barley-mow!”

forie—1ton
“We'll drink it out of the vessel[i], boys,”
‘Here’s a health to the barley-mow!”
for j « i downto 1
“The vessel[j]"
“And the jolly brown bow!!"
“Here’s a health to the barley-mow!”
“Here's a health to the barley-mow, my brave boys,”
‘Here's a health to the barley-mow!”

Figure 1.7. “The Barley Mow".

(a) Suppose each name vessel[i] is a single word, and you can sing four words a
second. How long would it take you to sing BARLEYMow(n)? (Give a tight
asymptotic bound.)

(b) If you want to sing this song for arbitrarily large values of n, youll have to
make up your own vessel names. To avoid repetition, these names must become
progressively longer as n increases. Suppose vessel[n] has ©(logn) syllables, and
you can sing six syllables per second. Now how long would it take you to sing
BAarRLEYMow(n)? (Give a tight asymptotic bound.)

(c) Suppose each time you mention the name of a vessel, you actually drink the
corresponding amount of beer: one ounce for the jolly brown bowl, and 2' ounces

8In practice, the song uses some subset of nipperkin, quarter-gill, half-a-gill, gill, quarter-pint, half-a-pint,
pint, quart, pottle, gallon, half-anker, anker, firkin, half-barrel/kilderkin, barrel, hogshead, pipe/butt, tun,
well, river, and ocean. With a few exceptions (especially at the end), every vessel in this list is twice as big
as its predecessor. Irish and Scottish versions of the song have slightly different lyrics, and they usually
switch to people after “gallon”.

An early version of the song entitled “Give us once a drink” appears in the play Jack Drum’s Entertainment
(or the Comedie of Pasquill and Katherine) written by John Marston around 1600. (“Giue vs once a drinke
for and the black bole. Sing gentle Butler bally moy!”) There is some question whether Marston wrote the
“high Dutch Song” specifically for the play, whether “bally moy” is a mondegreen for “barley mow” or vice
versa, or whether it’s actually the same song at all. These discussions are best had over n bottles of beer.

http://www.youtube.com/watch?v=tN7wh3DrIBU
http://books.google.com/books?id=RCFAAAAAYAAJ&pg=PA159#v=onepage&q&f=false

Exercises

for each vessel[i]. Assuming for purposes of this problem that you are at least
21 years old, exactly how many ounces of beer would you drink if you sang
BAaRLEYMow(n)? (Give an exact answer, not just an asymptotic bound.)

. Describe and analyze the Boston Pool stable matching algorithm in more detail, so
that the worst-case running time is O(n?), as claimed earlier in the notes.

. Prove that it is possible for the Boston Pool algorithm to execute Q(n?) rounds. (You
need to describe both a suitable input and a sequence of Q(n?) valid proposals.)

. Describe and analyze an efficient algorithm to determine whether a given set of
hospital and doctor preferences has to a unique stable matching.

. Consider a generalization of the stable matching problem, where some doctors do
not rank all hospitals and some hospitals do not rank all doctors, and a doctor can be
assigned to a hospital only if each appears in the other’s preference list. In this case,
there are three additional unstable situations:

¢ A hospital prefers an unmatched doctor to its assigned match.
* A doctor prefers an unmatched hospital to her assigned match.

* Anunmatched doctor and an unmatched hospital appear in each other’s preference
lists.

Describe and analyze an efficient algorithm that computes a stable matching in this
setting.

Note that a stable matching may leave some doctors and hospitals unmatched,
even though their preference lists are non-empty. For example, if every doctor lists
Harvard as their only acceptable hospital, and every hospital lists Dr. House as their
only acceptable intern, then only House and Harvard will be matched.

. Recall that the input to the Huntington-Hill apportionment algorithm APPORTION-
CONGRESS is an array P[1..n], where P[i] is the population of the ith state, and an
integer R, the total number of representatives to be allotted. The output is an array
r[1..n], where r[i] is the number of representatives allotted to the ith state by the
algorithm.

Let P = Z?ZIP[i] denote the total population of the country, and let r/ =
R - P[i]/P denote the ideal number of representatives for the ith state.

(a) Prove that r[i] > |r] for all i.

(b) Describe and analyze an algorithm that computes exactly the same congressional
apportionment as APPORTIONCONGRESS in O(nlogn) time. (Recall that the
running time of APPORTIONCONGRESS depends on R, which could be arbitrarily
larger than n.)

21

0. INTRODUCTION

(c) If a state’s population is small relative to the other states, its ideal number r; of
representatives could be close to zero; thus, tiny states are over-represented by
the Huntington-Hill apportionment process. Surprisingly, this can also be true
of very large states. Let a = (1 + v/2)/2 ~ 1.20710678119. Prove that for any
€ > 0, there is an input to APPORTIONCONGRESS with max; P[i] = P[1], such that
r[1]> (a—¢)ri.

(d) Can you improve the constant a in the previous question?

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.

22 See http:/jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

	Introduction
	What is an algorithm?
	Multiplication
	Congressional Apportionment
	A Bad Example
	Writing Down Algorithms
	Analyzing algorithms
	A Longer Example: Stable Matching
	Why are we here, anyway?

