In lecture, Jeff described an algorithm of Karatsuba that multiplies two \(n \)-digit integers using \(O(n^{\lg 3}) \) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an \(n \)-digit number and an \(m \)-digit number, where \(m < n \), in \(O(m^{\lg 3} - 1)n \) time.

2. Describe an algorithm to compute the decimal representation of \(2^n \) in \(O(n^{\lg 3}) \) time.
 \[\text{[Hint: Repeated squaring. The standard algorithm that computes one decimal digit at a time requires } \Theta(n^2) \text{ time.]} \]

3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary \(n \)-bit binary number in \(O(n^{\lg 3}) \) time.
 \[\text{[Hint: Let } x = a \cdot 2^{n/2} + b. \text{ Watch out for an extra log factor in the running time.]} \]

Think about later:

4. Suppose we can multiply two \(n \)-digit numbers in \(O(M(n)) \) time. Describe an algorithm to compute the decimal representation of an arbitrary \(n \)-bit binary number in \(O(M(n) \log n) \) time.