Let \(L \) be an arbitrary regular language over the alphabet \(\Sigma = \{0, 1\} \). Prove that the following languages are also regular. (You probably won’t get to all of these.)

1. \(\text{FlipOdds}(L) := \{\text{flipOdds}(w) \mid w \in L\} \), where the function \(\text{flipOdds} \) inverts every odd-indexed bit in \(w \). For example:

\[
\text{flipOdds}(000111101010101) = 1010010111111111
\]

Solution: Let \(M = (Q, s, A, \delta) \) be a DFA that accepts \(L \). We construct a new DFA \(M' = (Q', s', A', \delta') \) that accepts \(\text{FlipOdds}(L) \) as follows.

Intuitively, \(M' \) receives some string \(\text{flipOdds}(w) \) as input, restores every other bit to obtain \(w \), and simulates \(M \) on the restored string \(w \).

Each state \((q, \text{flip})\) of \(M' \) indicates that \(M \) is in state \(q \), and we need to flip the next input bit if \(\text{flip} = \text{TRUE} \).

\[
\begin{align*}
Q' &= Q \times \{\text{TRUE}, \text{FALSE}\} \\
s' &= (s, \text{TRUE}) \\
A' &= \\
\delta'((q, \text{flip}), a) &=
\end{align*}
\]

2. \(\text{UnflipOdd1s}(L) := \{w \in \Sigma^* \mid \text{flipOdd1s}(w) \in L\} \), where the function \(\text{flipOdd1} \) inverts every other 1 bit of its input string, starting with the first 1. For example:

\[
\text{flipOdd1s}(0000111101010101) = 00000100010001
\]

Solution: Let \(M = (Q, s, A, \delta) \) be a DFA that accepts \(L \). We construct a new DFA \(M' = (Q', s', A', \delta') \) that accepts \(\text{UnflipOdd1s}(L) \) as follows.

Intuitively, \(M' \) receives some string \(w \) as input, flips every other 1 bit, and simulates \(M \) on the transformed string.

Each state \((q, \text{flip})\) of \(M' \) indicates that \(M \) is in state \(q \), and we need to flip the next 1 bit of and only if \(\text{flip} = \text{TRUE} \).

\[
\begin{align*}
Q' &= Q \times \{\text{TRUE}, \text{FALSE}\} \\
s' &= (s, \text{TRUE}) \\
A' &= \\
\delta'((q, \text{flip}), a) &=
\end{align*}
\]
3. FLIPODDLs(L) := \{\text{flipOdd}s(w) \mid w \in L\}, where the function \text{flipOdd} is defined as in the previous problem.

Solution: Let \(M = (Q, s, A, \delta) \) be a DFA that accepts \(L \). We construct a new NFA \(M' = (Q', s', A', \delta') \) that accepts FLIPODDLs(L) as follows.

Intuitively, \(M' \) receives some string \(\text{flipOdd}s(w) \) as input, guesses which 0 bits to restore to 1s, and simulates \(M \) on the restored string \(w \). No string in FLIPODDLs(L) has two 1s in a row, so if \(M' \) ever sees 11, it rejects.

Each state \((q, \text{flip})\) of \(M' \) indicates that \(M \) is in state \(q \), and we need to flip a 0 bit before the next 1 if \(\text{flip} = \text{TRUE} \).

\[
Q' = Q \times \{\text{TRUE, FALSE}\} \\
s' = (s, \text{TRUE}) \\
A' = \\
\delta'((q, \text{flip}), a) = \]

4. FARO(L) := \{\text{faro}(w, x) \mid w, x \in L \text{ and } |w| = |x|\}, where the function faro is defined recursively as follows:

\[
\text{faro}(w, x) := \begin{cases} \\
x & \text{if } w = \varepsilon \\
a \cdot \text{faro}(x, y) & \text{if } w = ay \text{ for some } a \in \Sigma \text{ and some } y \in \Sigma^* \\
\end{cases}
\]

For example, \(\text{faro}(0001101, 1111001) = 0101011100011 \). (A "faro shuffle" splits a deck of cards into two equal piles and then perfectly interleaves them.)

Solution: Let \(M = (Q, s, A, \delta) \) be a DFA that accepts \(L \). We construct a DFA \(M' = (Q', s', A', \delta') \) that accepts FARO(L) as follows.

Intuitively, \(M' \) reads the string \(\text{faro}(w, x) \) as input, splits the string into the subsequences \(w \) and \(x \), and passes each of those strings to an independent copy of \(M \).

Each state \((q_1, q_2, \text{next})\) indicates that the copy of \(M \) that gets \(w \) is in state \(q_1 \), the copy of \(M \) that gets \(x \) is in state \(q_2 \), and \text{next} indicates which copy gets the next input bit.

\[
Q' = Q \times Q \times \{1, 2\} \\
s' = (s, s, 1) \\
A' = \\
\delta'((q_1, q_2, \text{next}), a) =
\]