Rice’s Theorem. Let \(\mathcal{L} \) be any set of languages that satisfies the following conditions:

- There is a Turing machine \(Y \) such that \(\text{Accept}(Y) \in \mathcal{L} \).
- There is a Turing machine \(N \) such that \(\text{Accept}(N) \notin \mathcal{L} \).

The language \(\text{AcceptIn}(\mathcal{L}) := \{ \langle M \rangle \mid \text{Accept}(M) \in \mathcal{L} \} \) is undecidable.

You may find the following Turing machines useful:

- \(M_{\text{ACCEPT}} \) accepts every input.
- \(M_{\text{REJECT}} \) rejects every input.
- \(M_{\text{HANG}} \) infinite-loops on every input.

Prove that the following languages are undecidable using Rice’s Theorem:

1. \(\text{AcceptRegular} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is regular} \} \)
2. \(\text{AcceptILLINI} := \{ \langle M \rangle \mid M \text{ accepts the string ILLINI} \} \)
3. \(\text{AcceptPALINDROME} := \{ \langle M \rangle \mid M \text{ accepts at least one palindrome} \} \)
4. \(\text{AcceptTHREE} := \{ \langle M \rangle \mid M \text{ accepts exactly three strings} \} \)
5. \(\text{AcceptUNDECIDABLE} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is undecidable} \} \)

To think about later. Which of the following languages are undecidable? How would you prove that? Remember that we know several ways to prove undecidability:

- Diagonalization: Assume the language is decidable, and derive an algorithm with self-contradictory behavior.
- Reduction: Assume the language is decidable, and derive an algorithm for a known undecidable language, like \(\text{Halt} \) or \(\text{SelfReject} \) or \(\text{NeverAccept} \).
- Rice’s Theorem: Find an appropriate family of languages \(\mathcal{L} \), a machine \(Y \) that accepts a language in \(\mathcal{L} \), and a machine \(N \) that does not accept a language in \(\mathcal{L} \).
- Closure: If two languages \(L \) and \(L' \) are decidable, then the languages \(L \cap L' \) and \(L \cup L' \) and \(L \setminus L' \) and \(L \oplus L' \) and \(L^* \) are all decidable, too.

6. \(\text{Accept}\{\varepsilon\} := \{ \langle M \rangle \mid M \text{ accepts only the string } \varepsilon; \text{ that is, } \text{Accept}(M) = \{ \varepsilon \} \} \)
7. \(\text{Accept}\emptyset := \{ \langle M \rangle \mid M \text{ does not accept any strings; that is, } \text{Accept}(M) = \emptyset \} \)
8. \(\text{Accept}\emptyset := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is not an acceptable language} \} \)
9. \(\text{Accept=}\text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) = \text{Reject}(M) \} \)
10. \(\text{Accept}\neq\text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) \neq \text{Reject}(M) \} \)
11. \(\text{Accept}\cup\text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) \cup \text{Reject}(M) = \Sigma^* \} \)