This is the last graded homework before the final exam.

1. (a) A subset S of vertices in an undirected graph G is **half-independent** if each vertex in S is adjacent to at most one other vertex in S. Prove that finding the size of the largest half-independent set of vertices in a given undirected graph is NP-hard.

(b) A subset S of vertices in an undirected graph G is **sort-of-independent** if if each vertex in S is adjacent to at most 374 other vertices in S. Prove that finding the size of the largest sort-of-independent set of vertices in a given undirected graph is NP-hard.

2. Fix an alphabet $\Sigma = \{0, 1\}$. Prove that the following problems are NP-hard.\(^1\)

 (a) Given a regular expression R over the alphabet Σ, is $L(R) \neq \Sigma^*$?

 (b) Given an NFA M over the alphabet Σ, is $L(M) \neq \Sigma^*$?

 [Hint: Encode all the **bad** choices for some problem into a regular expression R, so that if all choices are bad, then $L(R) = \Sigma^*$.]

3. Let $\langle M \rangle$ denote the encoding of a Turing machine M (or if you prefer, the Python source code for the executable code M). Recall that $x \cdot y$ denotes the concatenation of strings x and y. Prove that the following language is undecidable.

 $SELF\overline{SELF ACCEPT} := \{ \langle M \rangle \mid M \text{ accepts the string } \langle M \rangle \cdot \langle M \rangle \}$

 Note that Rice’s theorem does **not** apply to this language.

\(^1\)In fact, both of these problems are NP-hard even when $|\Sigma| = 1$, but proving that is much more difficult.
Solved Problem

4. A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a double-Hamiltonian tour.

This graph contains the double-Hamiltonian tour $a \rightarrow b \rightarrow d \rightarrow g \rightarrow e \rightarrow b \rightarrow d \rightarrow c \rightarrow f \rightarrow a \rightarrow c \rightarrow f \rightarrow g \rightarrow e \rightarrow a$.

Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching a small gadget to every vertex of G. Specifically, for each vertex v, we add two vertices v^\uparrow and v^\downarrow, along with three edges vv^\downarrow, vv^\uparrow, and $v^\downarrow v^\uparrow$.

![A vertex in G, and the corresponding vertex gadget in H.](image)

I claim that G has a Hamiltonian cycle if and only if H has a double-Hamiltonian tour.

\Rightarrow Suppose G has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of H by replacing each vertex v_i with the following walk:

$$\cdots \rightarrow v_i \rightarrow v_i^\downarrow \rightarrow v_i^\uparrow \rightarrow v_i^\uparrow \rightarrow v_i^\downarrow \rightarrow v_i \rightarrow \cdots$$

\Leftarrow Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v in the original graph G; the tour D must visit v exactly twice. Those two visits split D into two closed walks, each of which visits v exactly once. Any walk from v^\downarrow or v^\uparrow to any other vertex in H must pass through v. Thus, one of the two closed walks visits only the vertices v, v^\downarrow, and v^\uparrow. Thus, if we simply remove the vertices in $H \setminus G$ from D, we obtain a closed walk in G that visits every vertex in G once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial time.

With more effort, we can construct a graph H that contains a double-Hamiltonian tour that traverses each edge of H at most once if and only if G contains a Hamiltonian cycle. For each vertex v in G we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page.
Non-solution (self-loops): We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching a self-loop every vertex of G. Given any graph G, we can clearly construct the corresponding graph H in polynomial time.

Suppose G has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of H by alternating between edges of the Hamiltonian cycle and self-loops:

$v_1 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_n \rightarrow v_n \rightarrow v_1$.

On the other hand, if H has a double-Hamiltonian tour, we cannot conclude that G has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in H uses any self-loops. The graph G shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.

Rubric: 10 points, standard polynomial-time reduction rubric