
Models of Computation Lecture 1: Strings [Fa’16]

THOMAS GODFREY, a self-taught mathematician, great in his way, and afterward inventor of what is
now called Hadley’s Quadrant. But he knew little out of his way, and was not a pleasing companion;
as, like most great mathematicians I have met with, he expected universal precision in everything
said, or was forever denying or distinguishing upon trifles, to the disturbance of all conversation.
He soon left us.

— Benjamin Franklin, Memoirs, Part 1 (1771)
describing one of the founding members of the Junto

I hope the reader sees that the alphabet can be understood by any intelligent being who has any
one of the five senses left him,—by all rational men, that is, excepting the few eyeless deaf persons
who have lost both taste and smell in some complete paralysis. . . . Whales in the sea can telegraph
as well as senators on land, if they will only note the difference between long spoutings and short
ones. . . . A tired listener at church, by properly varying his long yawns and his short ones, may
express his opinion of the sermon to the opposite gallery before the sermon is done.

— Edward Everett Hale, “The Dot and Line Alphabet”, Altlantic Monthy (October 1858)

If indeed, as Hilbert asserted, mathematics is a meaningless game played with meaningless marks
on paper, the only mathematical experience to which we can refer is the making of marks on paper.

— Eric Temple Bell, The Queen of the Sciences (1931)

1 Strings

Throughout this course, we will discuss dozens of algorithms and computational models that
manipulate sequences: one-dimensional arrays, linked lists, blocks of text, walks in graphs,
sequences of executed instructions, and so on. Ultimately the input and output of any algorithm
must be representable as a finite string of symbols—the raw contents of some contiguous portion
of the computer’s memory. Reasoning about computation requires reasoning about strings.

This note lists several formal definitions and formal induction proofs related to strings. These
definitions and proofs are intentionally much more detailed than normally used in practice—most
people’s intuition about strings is fairly accurate—but the extra precision is necessary for any
sort of formal proof. It may be helpful to think of this material as part of the “assembly language”
of theoretical computer science. We normally think about computation at a much higher level
of abstraction, but ultimately every argument must “compile” down to these (and similar)
definitions.

1.1 Definitions

Fix an arbitrary finite set Σ called the alphabet; the individual elements of Σ are called symbols
or characters. As a notational convention, I will always use lower-case letters near the start of
the English alphabet (a, b, c, . . . ) as symbol variables, and never as explicit symbols. For explicit
symbols, I will always use fixed-width upper-case letters (A, B, C, . . . ), digits (0, 1, 2, . . . ),
or other symbols (�, $, #, •, . . . ) that are clearly distinguishable from variables. For further
emphasis, I will almost always typeset explicit symbols in red.

A string (or word) over Σ is a finite sequence of zero or more symbols from Σ. Formally, a
string w over Σ is defined recursively as either

• the empty string, denoted by the Greek letter ε (epsilon), or

• an ordered pair (a, x ), where a is a symbol in Σ and x is a string over Σ.
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We normally write either a · x or simply ax to denote the ordered pair (a, x). Similarly, we
normally write explicit strings as sequences of symbols instead of nested ordered pairs; for
example, STRING is convenient shorthand for the formal expression (S, (T, (R, (I, (N, (G,ε)))))).
As a notational convention, I will always use lower-case letters near the end of the English
alphabet (. . . , w, x , y, z) for string variables, and SHOUTY�RED�MONOSPACED�TEXT to typeset
explicit (non-empty) strings.

The set of all strings over Σ is denoted Σ∗ (pronounced “sigma star”). It is very important to
remember that every element of Σ∗ is a finite string, although Σ∗ itself is an infinite set containing
strings of every possible finite length.

The length |w | of a string w is the number of symbols in w, defined formally as follows:

|w| :=

¨

0 if w= ε,
1+ |x | if w= ax .

For example, the string FIFTEEN has length 7, the string SEVEN has length 5, and the string 5
has length 1. Although they are formally different objects, we do not normally distinguish
between symbols and strings of length 1.

The concatenation of two strings x and y, denoted either x • y or simply x y , is the
unique string containing the characters of x in order, followed by the characters in y in
order. For example, the string NOWHERE is the concatenation of the strings NOW and HERE;
that is, NOW • HERE = NOWHERE. (On the other hand, HERE • NOW = HERENOW.) Formally,
concatenation is defined recusively as follows:

w • z :=

¨

z if w= ε,
a · (x • z) if w= ax .

(Here I’m using a larger dot • to formally distinguish the operator that concatenates two arbitrary
strings from from the operator · that builds a string from a single character and a string.)

When we describe the concatenation of more than two strings, we normally omit all dots
and parentheses, writing wxyz instead of (w • (x • y)) • z, for example. This simplification is
justified by the fact (which we will prove shortly) that • is associative.

1.2 Induction on Strings

Induction is the standard technique for proving statements about recursively defined objects.
Hopefully you are already comfortable proving statements about natural numbers via induction,
but induction is actually a far more general technique. Several different variants of induction
can be used to prove statements about more general structures; here I describe the variant
that I recommend (and actually use in practice). This variant follows two primary design
considerations:

• The case structure of the proof should mirror the case structure of the recursive defi-
nition. For example, if you are proving something about all strings, your proof should have
two cases: Either w= ε, or w= ax for some symbol a and string x .

• The inductive hypothesis should be as strong as possible. The (strong) inductive hypoth-
esis for statements about natural numbers is always “Assume there is no counterexample k
such that k < n.” I recommend adopting a similar inductive hypothesis for strings: “Assume
there is no counterexample x such that |x | < |w|.” Then for the case w = ax , we have
|x |= |w| − 1< |w| by definition of |w|, so the inductive hypothesis applies to x .
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Thus, string-induction proofs have the following boilerplate structure. Suppose we want to prove
that every string is perfectly cromulent, whatever that means. The white boxes hide additional
proof details that, among other things, depend on the precise definition of “perfectly cromulent”.

Proof: Let w be an arbitrary string.

Assume, for every string x such that |x |< |w|, that x is perfectly cromulent.

There are two cases to consider.

• Suppose w= ε.

Therefore, w is perfectly cromulent.

• Suppose w= ax for some symbol a and string x .
The induction hypothesis implies that x is perfectly cromulent.

Therefore, w is perfectly cromulent.

In both cases, we conclude that w is perfectly cromulent. �

Here are three canonical examples of this proof structure. When developing proofs in this
style, I strongly recommend first mindlessly writing the green text (the boilerplate) with lots of
space for each case, then filling in the red text (the actual theorem and the induction hypothesis),
and only then starting to actually think.

Lemma 1.1. For every string w, we have w • ε = w.

Proof: Let w be an arbitrary string. Assume that x •ε = x for every string x such that |x |< |w|.
There are two cases to consider:

• Suppose w= ε.

w • ε = ε • ε because w= ε,

= ε by definition of concatenation,

= w because w= ε.

• Suppose w= ax for some symbol a and string x .

w • ε = (a · x) • ε because w= ax ,

= a · (x • ε) by definition of concatenation,

= a · x by the inductive hypothesis,

= w because w= ax .

In both cases, we conclude that w • ε = w. �

Lemma 1.2. Concatenation adds length: |w • x |= |w|+ |x | for all strings w and x .

Proof: Let w and x be arbitrary strings. Assume that |y • x |= |y|+ |x | for every string y such
that |y|< |w|. (Notice that we are using induction only on w, not on x .) There are two cases to
consider:
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• Suppose w= ε.

|w • x |= |ε • x | because w= ε

= |x | by definition of •

= |ε|+ |x | |e|= 0 by definition of | |
= |w|+ |x | because w= ε

• Suppose w= a y for some symbol a and string y .

|w • x |= |a y • x | because w= a y

= |a · (y • x)| by definition of •

= 1+ |y • x | by definition of | |
= 1+ |y|+ |x | by the inductive hypothesis

= |a y|+ |x | by definition of | |
= |w|+ |x | because w= a y

In both cases, we conclude that |w • x |= |w|+ |x |. �

Lemma 1.3. Concatenation is associative: (w • x) • y = w • (x • y) for all strings w, x , and y .

Proof: Let w, x , and y be arbitrary strings. Assume that (z • x)• y = z • (x • y) for every string
z such that |z|< |w|. (Again, we are using induction only on w.) There are two cases to consider.

• Suppose w= ε.

(w • x) • y = (ε • x) • y because w= ε

= x • y by definition of •

= ε • (x • y) by definition of •

= w • (x • y) because w= ε

• Suppose w= az for some symbol a and some string z.

(w • x) • y = (az • x) • y because w= az

= (a · (z • x)) • y by definition of •

= a · ((z • x) • y) by definition of •

= a · (z • (x • y)) by the inductive hypothesis

= az • (x • y) by definition of •

= w • (x • y) because w= az

In both cases, we conclude that (w • x) • y = w • (x • y). �

This is not the only boilerplate that one can use for induction proofs on strings. For example,
we can model our case analysis on the following observation, whose easy proof we leave as an
exercise (hint, hint): A string w ∈ Σ∗ is non-empty if and only if either (1) w= a for some symbol
a ∈ Σ, or (2) w= x • y for some non-empty strings x and y . In case (2), Lemma 1.2 implies that
|x |< |w| and |y|< |w|, so in an inductive proof, we can apply the inductive hypothesis to either
x or y (or even both).

Here is a proof of Lemma 1.3 that uses this alternative recursive structure:
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Proof: Let w, x , and y be arbitrary strings. Assume that (z • x ′)• y ′ = z • (x ′ • y ′) for all strings
x ′, y ′, and z such that |z| < |w|. (We need a stronger induction hypothesis here than in the
previous proofs!) There are three cases to consider.

• Suppose w= ε.

(w • x) • y = (ε • x) • y because w= ε

= x • y by definition of •

= ε • (x • y) by definition of •

= w • (x • y) because w= ε

• Suppose w is equal to some symbol a.

(w • x) • y = (a • x) • y because w= a

= (a · x) • y because a • z = a · z by definition of •

= a · (x • y) by definition of •

= a • (x • y) because a • z = a · z by definition of •

= w • (x • y) because w= a

• Suppose w= u • v for some nonempty strings u and v.

(w • x) • y = ((u • v) • x) • y because w= u • v

= (u • (v • x)) • y by the inductive hypothesis, because |u|< |w|
= u • ((v • x) • y) by the inductive hypothesis, because |u|< |w|
= u • (v • (x • y)) by the inductive hypothesis, because |v|< |w|
= (u • v) • (x • y) by the inductive hypothesis, because |u|< |w|
= w • (x • y) because w= u • v

In all three cases, we conclude that (w • x) • y = w • (x • y). �

1.3 Indices, Substrings, and Subsequences

For any string w and any integer 1 ≤ i ≤ |w|, the expression wi denotes the ith symbol in w,
counting from left to right. More formally, wi is recursively defined as follows:

wi :=

¨

a if w= ax and i = 1,

x i−1 if w= ax and i > 1.

As one might reasonably expect, wi is formally undefined if i < 1 or w = ε, and therefore (by
induction) if i > |w|. The integer i is called the index of wi .

We sometimes write strings as a concatenation of their constituent symbols using this
subscript notation: w= w1w2 · · ·w|w|. While standard, this notation is slightly misleading, since
it incorrectly suggests that the string w contains at least three symbols, when in fact w could be a
single symbol or even the empty string.

In actual code, subscripts are usually expressed using the bracket notation w [i]. Brackets
were introduced as a typographical convention over a hundred years ago because subscripts and
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superscripts¹ were difficult or impossible to type.² We sometimes write strings as explicit arrays
w[1 .. n], with the understanding that n = |w|. Again, this notation is potentially misleading;
always remember that n might be zero; the string/array could be empty.

A substring of a string w is another string obtained from w by deleting zero or more symbols
from the beginning and from the end. Formally, a string y is a substring of w if and only if
there are strings x and z such that w= x yz. Extending the array notation for strings, we write
w [i .. j] to denote the substring of w starting at wi and ending at w j . More formally, we define

w[i .. j] :=

¨

ε if j < i,

wi ·w[i + 1 .. j] otherwise.

A proper substring of w is any substring other than w itself. For example, LAUGH is a proper
substring of SLAUGHTER. Whenever y is a (proper) substring of w, we also call w a (proper)
superstring of y .

A prefix of w[1 .. n] is any substring of the form w[1 .. j]. Equivalently, a string p is a prefix
of another string w if and only if there is a string x such that px = w. A proper prefix of w is
any prefix except w itself. For example, DIE is a proper prefix of DIET.

Similarly, a suffix of w[1 .. n] is any substring of the form w[i .. n]. Equivalently, a string s is a
suffix of a string w if and only if there is a string x such that xs = w. A proper suffix of w is
any suffix except w itself. For example, YES is a proper suffix of EYES, and HE is both a proper
prefix and a proper suffix of HEADACHE.

A subsequence of a string w is a string obtained by deleting zero or more symbols from
anywhere in w. More formally, z is a subsequence of w if and only if

• z = ε, or

• w= ax for some symbol a and some string x such that z is a subsequence of x .

• w= ax and z = a y for some symbol a and some strings x and y , and y is a subsequence
of x .

A proper subsequence of w is any subsequence of w other than w itself. Whenever z is a (proper)
subsequence of w, we also call w a (proper) supersequence of z.

Substrings and subsequences are not the same objects; don’t confuse them! Every substring
of w is also a subsequence of w, but not every subsequence is a substring. For example, METAL is
a subsequence, but not a substring, of MEATBALL. To emphasize the distinction, we sometimes
redundantly refer to substrings of w as contiguous substrings, meaning all their symbols appear
together in w.

¹The same bracket notation is also used for bibliographic references, instead of the traditional footnote/endnote
superscripts, for exactly the same reasons.

²A typewriter is an obsolete mechanical device loosely resembling a computer keyboard. Pressing a key on a
typewriter moves a lever (called a “typebar”) that strikes a cloth ribbon full of ink against a piece of paper, leaving the
image of a single character. Many historians believe that the ordering of letters on modern keyboards (QWERTYUIOP)
evolved in the late 1800s, reaching its modern form on the 1874 Sholes & Glidden Type-WriterTM, in part to separate
many common letter pairs, to prevent typebars from jamming against each other; this is also why the keys on most
modern keyboards are arranged in a slanted grid. (The common folk theory that the ordering was deliberately
intended to slow down typists doesn’t withstand careful scrutiny.) A more recent theory suggests that the ordering
was influenced by telegraph³ operators, who found older alphabetic arrangements confusing, in part because of
ambiguities in American Morse Code.

³A telegraph is an obsolete electromechanical communication device consisting of an electrical circuit with a
switch at one end and an electromagnet at the other. The sending operator would press and release a key, closing and
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Exercises

Most of the following exercises ask for proofs of various claims about strings. Here “prove” means
give a complete, self-contained, formal proof by inductive definition-chasing, using the boilerplate
structure recommended in Section 1.2. Feel free to use Lemmas 1.1, 1.2, and 1.3 without proof,
but don’t assume any other facts about strings that you have not actually proved. Do not appeal
to intuition, and do not use the words “obvious” or “clearly” or “just”. Most of these claims are in
fact obvious; the real exercise is understanding why they’re obvious.

1. Let w be an arbitrary string, and let n= |w|. Prove each of the following statements.

(a) w has exactly n+ 1 prefixes.

(b) w has exactly n proper suffixes.

(c) w has at most n(n+ 1)/2 distinct substrings. (Why “at most”?)

(d) w has at most 2n − 1 distinct proper subsequences. (Why “at most”?)

2. For any symbol a and any string w, let #(a, w ) denote the number of occurrences of a
in w. For example, #(A,BANANA) = 3 and #(X,FLIBBERTIGIBBET) = 0.

(a) Give a formal recursive definition of the function #: Σ×Σ∗→ N.
(b) Prove that #(a, x y) = #(a, x) +#(a, y) for every symbol a and all strings x and y.

Your proof must rely on both your answer to part (a) and the formal recursive
definition of string concatenation.

3. Recursively define a set L of strings over the alphabet {0,1} as follows:

• The empty string ε is in L.

• For any two strings x and y in L, the string 0x1y0 is also in L.

• These are the only strings in L.

(a) Prove that the string 000010101010010100 is in L.

(b) Prove by induction that every string in L has exactly twice as many 0s as 1s. (You may
assume the identity #(a, x y) = #(a, x) +#(a, y) for any symbol a and any strings x
and y; see Exercise 2(b).)

(c) Give an example of a string with exactly twice as many 0s as 1s that is not in L.

opening the circuit, originally causing the electromagnet to push a stylus onto a moving paper tape, leaving marks
that could be decoded by the receiving operator. (Operators quickly discovered that they could directly decode the
clicking sounds made by the electromagnet, and so the paper tape became obsolete almost immediately.) The most
common scheme within the US to encode symbols, developed by Alfred Vail and Samuel Morse in 1837, used (mostly)
short (·) and long (−) marks—now called “dots” and “dashes”, or “dits” and “dahs”—separated by gaps of various
lengths. American Morse code (as it became known) was ambiguous; for example, the letter Z and the string SE were
both encoded by the sequence · · · · (“di-di-dit, dit”). This ambiguity has been blamed for the S key’s position on the
typewriter keyboard near E and Z.
Vail and Morse were of course not the first people to propose encoding symbols as strings of bits. That honor

apparently falls to Francis Bacon, who devised a five-bit binary encoding of the alphabet (except for the letters J and U)
in 1605 as the basis for a steganographic code—a method or hiding secret message in otherwise normal text.
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4. Recursively define a set L of strings over the alphabet {0,1} as follows:

• The empty string ε is in L.

• For any two strings x and y in L, the string 0x1y is also in L.

• For any two strings x and y in L, the string 1x0y is also in L.

• These are the only strings in L.

(a) Prove that the string 01000110111001 is in L.

(b) Prove by induction that every string in L has exactly the same number of 0s and 1s.
(You may assume the identity #(a, x y) = #(a, x)+#(a, y) for any symbol a and any
strings x and y; see Exercise 2(b).)

(c) Prove by induction that L contains every string with the same number of 0s and 1s.

5. Recursively define a set L of strings over the alphabet {0,1} as follows:

• The empty string ε is in L.

• For any strings x in L, the strings 0x1 and 1x0 are also in L.

• For any two strings x and y in L, the string x • y is also in L.

• These are the only strings in L.

(a) Prove that the string 01000110111001 is in L.

(b) Prove by induction that every string in L has exactly the same number of 0s and 1s.
(You may assume the identity #(a, x y) = #(a, x)+#(a, y) for any symbol a and any
strings x and y; see Exercise 2(b).)

(c) Prove by induction that every string with the same number of 0s and 1s is in L.

6. For any string w and any non-negative integer n, let wn denote the string obtained by
concatenating n copies of w; more formally, we define

wn :=

(

ε if n= 0

w • wn−1 otherwise

For example, (BLAH)5 = BLAHBLAHBLAHBLAHBLAH and ε374 = ε.

(a) Prove that wm • wn = wm+n for every string w and all non-negative integers n and m.

(b) Prove that #(a, wn) = n · #(a, w) for every string w, every symbol a, and every
non-negative integer n. (See Exercise 2.)

7. The reversal wR of a string w is defined recursively as follows:

wR :=

(

ε if w= ε

xR • a if w= a · x

(a) Prove that (wR)R = w for every string w.
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(b) Prove that |wR|= |w| for every string w.

(c) Prove that (w • x)R = xR • wR for all strings w and x .

(d) Prove that #(a, wR) = #(a, w) for every string w and every symbol a. (See Exercise 2.)

(e) Prove that (wR)n = (wn)R for every string w and every non-negative integer n. (See
Exercise 6.)

8. Let w be an arbitrary string, and let n= |w|. Prove the following statements for all indices
1≤ i ≤ j ≤ k ≤ n.

(a) |w[i .. j]|= j − i + 1

(b) w[i .. j] • w[ j + 1 .. k] = w[i .. k]

(c) wR[i .. j] = (w[i′ .. j′])R where i′ + j = j′ + i = |w|+ 1.

9. The complement w c of a string w ∈ {0,1}∗ is obtained from w by replacing every 0 in w
with a 1 and vice versa. The complement function can be defined recursively as follows:

wc :=











ε if w= ε
1 · x c if w= 0x

0 · x c if w= 1x

(a) Prove that |w|= |wc| for every string w.

(b) Prove that (x • y)c = x c • y c for all strings x and y .

(c) Prove that #(1, w) = #(0, wc) for every string w.

(d) Prove that (wn)c = (wc)n for every string w and every non-negative integer n.

(e) Prove that (wR)c = (wc)R for every string w.

10. A palindrome is a string that is equal to its reversal.

(a) Give a recursive definition of a palindrome over the alphabet Σ.

(b) Prove that any string p meets your recursive definition of a palindrome if and only if
p = pR.

(c) Using your recursive definition, prove that the strings w • wR and w • a • wR are
palindromes, for every string w and symbol a.

(d) Using your recursive definition, prove that pn is a palindrome for every palindrome p
and every natural number n. (See Exercise 6.)

(e) Using your recursive definition, prove that for every palindrome p, there is at most
one symbol a such that #(a, p) is odd. (See Exercise 2.)

11. A string w ∈ Σ∗ is called a shuffle of two strings x , y ∈ Σ∗ if at least one of the following
recursive conditions is satisfied:

• w= x = y = ε.
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• w = aw′ and x = ax ′ and w′ is a shuffle of x ′ and y, for some a ∈ Σ and some
w′, x ′ ∈ Σ∗.

• w = aw′ and y = a y ′ and w′ is a shuffle of x and y ′, for some a ∈ Σ and some
w′, y ′ ∈ Σ∗.

For example, the string BANANANANASA is a shuffle of the strings BANANA and ANANAS.

(a) Prove that if w is a shuffle of x and y , then |w|= |x |+ |y|.
(b) Prove that w is a shuffle of x and y if and only if wR is a shuffle of xR and yR.

12. Consider the following pair of mutually recursive functions on strings:

evens(w) :=

(

ε if w= ε

odds(x) if w= ax
odds(w) :=

(

ε if w= ε

a · evens(x) if w= ax

For example, evens(MISSISSIPPI) = ISSIP and odds(MISSISSIPPI) = MSISPI.

(a) Prove the following identity for all strings w and x:

evens(w • x) =

(

evens(w) • evens(x) if |w| is even,

evens(w) • odds(x) if |w| is odd.

(b) State and prove a similar identity for odds(w • x).

(c) Prove that every string w is a shuffle of evens(w) and odds(w).

13. Consider the following recursively defined function:

stutter(w) :=

¨

ε if w= ε

aa • stutter(x) if w= ax

For example, stutter(MISSISSIPPI) = MMIISSSSIISSSSIIPPPPII.

(a) Prove that |stutter(w)|= 2|w| for every string w.

(b) Prove that evens(stutter(w)) = w for every string w.

(c) Prove that odds(stutter(w)) = w for every string w.

(d) Prove that stutter(w) is a shuffle of w and w, for every string w.

(e) Prove that w is a palindrome if and only if stutter(w) is a palindrome, for every
string w.

14. For any string w, let declutter(w) denote the string obtained from w by deleting any symbol
that equals its immediate successor. For example, declutter(MISSISSIPPI) = MISISIPI,
and declutter(ABBCCCAAAACCCBBA) = ABCACBA.

(a) Given a recursive definition for the function declutter.

(b) Using your recursive definition, prove that declutter(stutter(w)) = declutter(w) for
every string w.
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15. For any positive integer n, the Fibonacci string Fn is defined recursively as follows:

Fn =











0 if n= 1,

1 if n= 2,

Fn−2 • Fn−1 otherwise.

For example, F6 = 10101101 and F7 = 0110110101101.

(a) Prove that for every integer n ≥ 2, the string Fn can also be obtained from Fn−1 by
replacing every occurrence of 0 with 1 and replacing every occurrence of 1 with 01.
More formally, prove that Fn = Finc(Fn−1), where

Finc(w) =











ε if w= ε
1 · Finc(x) if w= 0x

01 • Finc(x) if w= 1x

[Hint: First prove that Finc(x • y) = Finc(x) • Finc(y).]

(b) Prove that 00 and 111 are not substrings of any Fibonacci string Fn.

16. Consider the following recursively defined function

hanoi(w) =

¨

ε if w= ε
hanoi(w) • a • hanoi(w) otherwise

Prove that |hanoi(w)|= 2|w| − 1 for every string w.

17. Consider the following recursively defined function

slog(w) =

¨

ε if w= ε
a · slog(evens(w)) if w= ax

Prove that |slog(w)|=
�

log2(|w|+ 1)
�

for every string w.

18. Consider the following recursively defined function

bitrev(w) =

¨

w if |w| ≤ 1

bitrev(odds(w)) • bitrev(evens(w)) otherwise

(a) Prove that |bitrev(w)|= |w| for every string w.
?(b) Prove that bitrev(bitrev(w)) = w for every string w such that |w| is a power of 2.
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?19. The binary value of any string w ∈ {0,1}∗ is the integer whose binary representation
(possibly with leading 0s) is w. The value function can be defined recursively as follows:

value(w) :=











0 if w= ε
2 · value(x) if w= x •0
2 · value(x) + 1 if w= x •1

(a) Prove that value(w) + value(wc) = 2|w| − 1 for every string w ∈ {0,1}∗.
(b) Prove that value(x • y) = value(x) · 2|y| + value(y) for all strings x , y ∈ {0,1}∗.

?20. Prove that the following three properties of strings are in fact identical.

• A string w ∈ {0,1}∗ is balanced if it satisfies one of the following conditions:

– w= ε,
– w= 0x1 for some balanced string x , or
– w= x y for some balanced strings x and y .

• A string w ∈ {0,1}∗ is erasable if it satisfies one of the following conditions:

– w= ε, or
– w= x01y for some strings x and y such that x y is erasable. (The strings x and

y are not necessarily erasable.)

• A string w ∈ {0,1}∗ is conservative if it satisfies both of the following conditions:

– w has an equal number of 0s and 1s, and
– no prefix of w has more 0s than 1s.

(a) Prove that every balanced string is erasable.

(b) Prove that every erasable string is conservative.

(c) Prove that every conservative string is balanced.

[Hint: To develop intuition, it may be helpful to think of 0s as left brackets and 1s as right
brackets, but don’t invoke this intuition in your proofs.]

?21. A string w ∈ {0,1}∗ is equitable if it has an equal number of 0s and 1s.

(a) Prove that a string w is equitable if and only if it satisfies one of the following
conditions:

• w= ε,
• w= 0x1 for some equitable string x ,
• w= 1x0 for some equitable string x , or
• w= x y for some equitable strings x and y .

(b) Prove that a string w is equitable if and only if it satisfies one of the following
conditions:

• w= ε,
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• w= x01y for some strings x and y such that x y is equitable, or
• w= x10y for some strings x and y such that x y is equitable.

In the last two cases, the individual strings x and y are not necessarily equitable.

(c) Prove that a string w is equitable if and only if it satisfies one of the following
conditions:

• w= ε,
• w= x y for some balanced string x and some equitable string y , or
• w= xR y for some for some balanced string x and some equitable string y .

(See the previous exercise for the definition of “balanced”.)
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