CS/ECE 374 Lab 62 — February 24 Spring 2017

In lecture, Alex described an algorithm of Karatsuba that multiplies two n-digit integers using
O(nlg?’) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some
extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an n-digit number and an m-digit number,
where m < n, in O(m'#3~1n) time.

Solution: Split the larger number into [n/m] chunks, each with m digits. Multiply the
smaller number by each chunk in O(m'¢3) time using Karatsuba’s algorithm, and then add
the resulting partial products with appropriate shifts.

SkEwMurtipLy(x[0..m—1], y[0..n —1]):
prod < 0
offset < 0
fori < 0to[n/m]—1
chunk « y[i-m..(i+1)-m—1]
prod < prod + MurTIpLy(x, chunk) - 10°™
return prod

Each call to MuLTIPLY requires 0(m'83) time, and all other work within a single iteration
of the main loop requires O(m) time. Thus, the overall running time of the algorithm is
0(1) + [n/m]o(m'83) = O(m'¢3~1n) as required.

This is the standard method for multiplying a large integer by a single “digit” integer
written in base 10™, but with each single-“digit” multiplication implemented using
Karatsuba’s algorithm. [ |
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2. Describe an algorithm to compute the decimal representation of 2" in O(n'¢®) time. (The
standard algorithm that computes one digit at a time requires ©(n?) time.)

Solution: We compute 2" via repeated squaring, implementing the following recurrence:

1 ifn=0
2" = { (2"/2)2 if n > 0 is even
2- (2212 if n is odd

We use Karatsuba’s algorithm to implement decimal multiplication for each square.

TwoToTHE(n):
ifn=0
return 1
m e« [n/2]
gz « TwoToTHE(m)  {{recurse!))
z «— MuLrtipiy(z,2)  {(Karatsuba))
if n is odd
gz < ApD(z,2)
return g

The running time of this algorithm satisfies the recurrence T(n) = T(|n/2]) + O(n'¢3). We
can safely ignore the floor in the recursive argument. The recursion tree for this algorithm
is just a path; the work done at recursion depth i is O((n/2!)'%3) = O(n'83/3"). Thus, the
levels sums form a descending geometric series, which is dominated by the work at level 0,
so the total running time is at most O(n'83). [
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3. Describe a divide-and-conquer algorithm to compute the decimal representation of an
arbitrary n-bit binary number in O(n'8%) time. [Hint: Let x = a - 2"/ + b. Watch out for an
extra log factor in the running time.]

Solution: Following the hint, we break the input x into two smaller numbers x = a-2"/2+b;
recursively convert a and b into decimal; convert 2"/2 into decimal using the solution to
problem 2; multiply a and 2"/? using Karatsuba’s algorithm; and finally add the product
to b to get the final result.

DeciMAL(x[0..n—17):
if n <100
use brute force
m«—[n/2]
a<—x[m.n—1]
b« x[0.m—1]
return App(MurTipLy(DEcIMAL(a), TwoToTHE(m)), DEciMAL(b))

The running time of this algorithm satisfies the recurrence T(n) = 2T (n/2) + O(n'¢3);
the O(n'83) term includes the running times of both MurTIPLY and TwoToTHE (as well as
the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with 2 nodes at recursion depth i.
Each recursive call at depth i converts an n/2!-bit binary number to decimal; the non-
recursive work at the corresponding node of the recursion tree is O((n/21)'83) = 0(n'83/3%).
Thus, the total work at depth i is 27 - O(n'83/3%) = 0(n'83/(3/2)). The level sums define a
descending geometric series, which is dominated by its largest term O(n'¢%).

Notice that if we had converted 22 to decimal recursively instead of calling TWoToTHE,

the recurrence would have been T(n) = 3T (n/2) + O(n'83). Every level of this recursion
tree has the same sum, so the overall running time would be O(n'8%logn). |
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Think about later:

*4. Suppose we can multiply two n-digit numbers in O(M(n)) time. Describe an algorithm to
compute the decimal representation of an arbitrary n-bit binary number in O(M(n)logn)
time.

Solution: We modify the solutions of problems 2 and 3 to use the faster multiplication
algorithm instead of Karatsuba’s algorithm. Let T,(n) and T3(n) denote the running times
of TwoToTHE and DECIMAL, respectively. We need to solve the recurrences

To(n) = To(n/2)+O(M(n)) and T3(n)=2T5(n/2)+ Ty(n)+ O(M(n)).

But how can we do that when we don’t know M(n)?

For the moment, suppose M(n) = O(n°®) for some constant ¢ > 0. Since any algorithm
to multiply two n-digit numbers must read all n digits, we have M (n) = Q(n), and therefore
¢ > 1. On the other hand, the grade-school lattice algorithm implies M (n) = O(n?), so we
can safely assume ¢ < 2. With this assumption, the recursion tree method implies

Ty(n) = Ty(n/2) + O(n®) = Ty(n) =0(n°)

O(nlogn) ifc=1,

Ty(n) = 2T3(n/2) + O(n°) = Ty(n) = {O(nc) oot

So in this case, we have T5(n) = O(M(n)logn) as required.

In reality, M(n) may not be a simple polynomial, but we can effectively ignore any
sub-polynomial noise using the following trick. Suppose we can write M(n) = n° - u(n) for
some constant ¢ and some arbitrary non-decreasing function u(n).!

To solve the recurrence To(n) = T,(n/2) + O(M(n)), we define a new function T,(n) =
T,(n)/w(n). Then we have

Tz(n/2)+O(M(n)) < Tz(n/2)+O(M(n))
u(n) u(n) = u(n/2) u(n)

Here we used the inequality u(n) = u(n/2); this the only fact about u that we actually need.
The recursion tree method implies T,(n) < O(n®), and therefore T,(n) < O(n) - u(n) =
o(M(n)).

Similarly, to solve the recurrence T3(n) = 2T5(n/2) + O(M(n)), we define T5(n) =
T5(n)/u(n), which gives us the recurrence T5(n) < 2T5(n/2) + O(n°). The recursion tree
method implies

T,(n) = = T,(n/2) +0(n").

O(nlogn) ifc=1,

Ta(n) < {O(nc) ifc>1.

In both cases, we have T3(n) = O(n°logn), which implies that T3(n) = O(M(n)logn). ™

1A recent multiplication algorithm based on fast Fourier transforms runs in O(nlogn2°1°¢" ™) time, so we can
safely assume that ¢ = 1. But our solution doesn’t use that fact.



