
Proving Correctness of DFAs and Lower Bounds

Mahesh Viswanathan

Induction is a proof principle that is often used to establish a statement of the form “for all natural
numbers i, some property P (i) holds”, i.e., ∀i ∈ N. P (i). In this class, there will be many occassions where
we will need to prove that some property holds for all strings, especially when proving the correctness of a
DFA design, i.e., ∀w ∈ Σ∗. S(w). We will often prove such statements “by induction on the length of w”.
What that means is “We will prove ∀w. S(w) by proving ∀i ∈ N.∀w ∈ Σi. S(w)”. That is, we will take ith
statement to be proved by induction to be ∀w ∈ Σi. S(w). Before giving examples of such proofs, we will
begin by establishing some basic properties of DFAs that will be useful.

1 Properties of DFAs

Let us fix a DFA M = (Q,Σ, δ, s, A) for the rest of this section. Recall the following definition of computation

p
w−→M q that captures the notion that M , when started in state p, on input w, could end up in state q.

Definition 1. For states p, q ∈ Q, and string w = w1w2 · · ·wk, where for each i, wi ∈ Σ, we say p
w−→M q

if there is a sequence of states r0, r1, . . . rk such that

1. r0 = p,

2. for each i > 0, δ(ri, wi+1) = ri+1, and

3. rk = q.

Thus, a computation from p to q on input w is a sequence of states (of length |w|+1), where the first state
in the sequence is p (condition 1 above), last state is q (condition 3), and every state in the sequence other
than the first, is obtained by taking a transition from the previous state in the sequence on the corresponding
input symbol from w (condition 2). Notice that is naturally ensures that for any p, p

ε−→M q iff p = q and

p
a−→M q for a ∈ Σ iff δ(p, a) = q.
One important property about DFAs is that for any state p and input string w, there is a unique state q

such that p
w−→M q. This is the reason why DFAs are deterministic, and we state and prove this observation

next.

Proposition 1. For any p and w ∈ Σ∗,

|{q ∈ Q | p w−→M q}| = 1

Proof. Proof is by induction on |w|. Thus, the ith statement proved by induction is taken to be

For every p ∈ Q, and w ∈ Σi, |{q ∈ Q | p w−→M q}| = 1.

Base Case: We need to prove the case when w ∈ Σ0. Thus, w = ε. By definition, p
w−→M q if and only

q = p which establishes the claim.

Induction Hypothesis: Suppose for every p ∈ Q, and w ∈ Σ∗ such that |w| < i, we have

|{q ∈ Q | p w−→M q}| = 1

1

Induction Step: Consider (without loss of generality) w = a1a2 · · · ai, such that aj ∈ Σ (for 1 ≤ j ≤ i).
Take u = a1 · · · ai−1

p
w−→M q iff there are r0, r1, . . . , ri such that r0 = p, ri = q, and δ(rj , aj+1) = rj+1

iff there is ri−1 such that p
u−→M ri−1 and δ(ri−1, ai) = q

Now, by induction hypothesis, since |{q ∈ Q | p u−→M q}| = 1, there is a unique ri−1 such that

p
u−→M ri−1. Also, since from any state ri−1 on symbol ai the next state is uniquely determined,

|{q ∈ Q | p w−→M q}| = 1.

Proposition 1 allows us to introduce a notation for the (unique) state of the DFA reached on input w
from p. Since this is often used we will formally define it.

Definition 2. δ∗M (p, w) = q where q is the unique state such that p
w−→M q.

We could have defined δ∗M (·) inductively as follows.

δ∗M (p, w) =

{
p if w = ε
δ∗M (δ(p, a), u) if w = au with a ∈ Σ, u ∈ Σ∗

This inductive definition is equivalent to the way we have defined δ∗M (·) in these notes. In addition the
following observations are a simple consequence of the definition of δ∗M (·).

• For every q ∈ Q, δ∗M (q, ε) = q, and

• For every q ∈ Q, and a ∈ Σ, δ∗M (q, a) = δ(q, a).

Consider an input string u·v that is the concatenation of two strings u and v. The state reached by the
DFA M on u·v when started in state p is the same as the state reached by M on input v when started in
q, where q = δ∗M (p, u). This is a straightforward observation, but it is very useful.

Proposition 2. For every u, v ∈ Σ∗ and p ∈ Q, δ∗M (p, uv) = δ∗M (δ∗M (p, u), v).

Proof. Let u = a1a2 . . . ai and v = ai+1 · · · ai+k, where aj ∈ Σ for every 1 ≤ j ≤ i+ k. Observe that,

q = δ∗M (p, uv) iff p
uv−→M q

iff there are r0, r1, . . . , ri+k such that r0 = p, ri+k = q, and δ(rj , aj+1) = rj+1

iff p
u−→M ri and ri

v−→M q
iff ri = δ∗M (p, u) and q = δ∗M (ri, v)
iff q = δ∗M (δ∗M (p, u), v)

2 Proving Correctness of DFA Constructions

To show that a DFA M = (Q,Σ, δ, s, A) accepts/recognizes a language L, we need to prove

L = L(M)
i.e., ∀w. w ∈ L(M) iff w ∈ L
i.e., ∀w. δ∗M (s, w) ∈ A iff w ∈ L

This last statement (∀w. δ∗M (s, w) ∈ A iff w ∈ L) is often proved by induction on |w|.

2

q0 q1

q2q3

1

1

1

1

0 0 0 0

Figure 1: Transition Diagram of M1

2.1 Example: Odd zeros and ones

Consider the DFA M1 shown in Figure 1. We will prove that

L(M1) = {w ∈ {0, 1} | w has an odd number of 1s and an odd number of 0s}

Unrolling what it means for a string w to be in L(M1), and taking A to stand for the accepting states of
M1, the above statement requires us to prove

∀w. δ∗M1
(q0, w) ∈ A iff w has an odd number of 1s and an odd number of 0s

Observing that there is only one accepting state (q2) we could further simplify what we need to prove as
follows.

∀w. δ∗M1
(q0, w) = q2 iff w has an odd number of 1s and an odd number of 0s

We will prove the above statement by induction on |w|.

Base Case Since we are doing induction on |w|, the base case is when |w| = 0 or w = ε. Observe that
δ∗M1

(q0, ε) = q0 6= q2. Further w = ε neither has an odd number of 1s nor an odd number of 0s. Thus,
we have established the base case.

Induction Hypothesis Let us assume that the claim holds for all w, such that |w| < i. That is,

∀w. if |w| < i then δ∗M1
(q0, w) = q2 iff w has an odd number of 1s and an odd number of 0s

Induction Step Consider a string w such that |w| = i, where i > 0. Any such string can be assumed to be
of the form ua, where u ∈ {0, 1}∗ and a ∈ {0, 1}. Based on what a is we have two subcases to consider.

If a = 0 then we have w = u0. Using Proposition 2, we have δ∗M1
(q0, u0) = δ∗M1

(δ∗M1
(q0, u), 0). Since

the only transition labeled 0 coming into state q2 is from q1, we have

δ∗M1
(q0, u0) = δ∗M1

(δ∗M1
(q0, u), 0) = q2 iff δ∗M1

(q0, u) = q1

Now, |u| < i, but can we use the induction hypothesis to conclude anything about u? Unfortunately,
we cannot. The induction hypothesis only tells us that if on an input u, M1 goes q0 to q2 then u has
an odd number of 1s and 0s; the induction hypothesis says nothing about an input that takes M1 to
state q1. Our induction proof cannot be completed and has failed.

The only way for us to succeed, is to prove (surprisingly) a stronger statement than what is needed to prove
the correctness of M1. This is often called strengthening the induction hypothesis and is typical of many
induction proofs. The strengthening will explicitly characterize the strings that lead to q, for each state q
(and not just the accepting state).

3

How do we determine what is true about strings that lead to a state q? This is based on our intuition
about what each state “remembers” of the string it has seen so far. For the specific example at hand, we
know that q0 remembers that the input so far has an even number of 0s and an even number of 1s; q1
remembers that the input so far has an even number of 0s but an odd number of 1s; q2 remembers that the
input has an odd number of 0s and 1s; and finally, q3 remembers that the input has an odd number 0s and
an even number of 1s.

Armed with this intuition, we will prove the following (stronger) statement by induction on |w|. For
every string w,

(a) δ∗M1
(q0, w) = q0 iff w has an even number of 0s and even number of 1s,

(b) δ∗M1
(q0, w) = q1 iff w has an even number of 0s and an odd number of 1s,

(c) δ∗M1
(q0, w) = q2 iff w has an odd number of 0s and an odd number of 1s, and

(d) δ∗M1
(q0, w) = q3 iff w has an odd number of 0s and an even number of 1s.

Observe that if we manage to prove the above statement, the correctness of M1 follows immediately because
the strings accepted by M1 are those that reach q2.

Notice that we are proving, that all four conditions (a),(b),(c), and (d) hold for all strings. When we
prove such a statement by induction on |w|, the ith statement (i.e., P (i) in the induction template) is that
for every string w of length i, (a),(b),(c), and (d) hold.

Base Case When |w| = 0, w = ε. We make the following two observations: δ∗M1
(q0, ε) = q0, and w = ε

has even number of 0s and 1s. This shows that condition (a) holds. Further (b), (c), and (d) hold
vaccuously. Thus, we have established the base case.

Induction Hypothesis Assume that for any string w of length < i, conditions (a), (b), (c), and (d) hold.

Induction Step Consider w of length i, where i > 0. Without loss of generality, w is of the form ua, where
a ∈ {0, 1} and u ∈ {0, 1}i−1 1. We can complete the induction step through a case analysis.

• Case q = q0, a = 0: δ∗M1
(q0, u0) = q0 iff δ∗M1

(q0, u) = q3 (because the only incoming 0 transition
into q0 is from q3) iff by induction hypothesis (condition (d)) u has odd number of 0s and even
number of 1s iff u0 has even number of 0s and an even number of 1s. Thus (a) has been established
for the induction step when a = 0.

• Case q = q0, a = 1: δ∗M1
(q0, u1) = q0 iff δ∗M1

(q0, u) = q1 (because the only incoming 1 transition
into q0 is from q1) iff by induction hypothesis (condition (b)) u has even number of 0s and odd
number of 1s iff u1 has even number of 0s and an even number of 1s. Thus (a) has been established
for the induction step when a = 1.

• Case q = q1, a = 0: δ∗M1
(q0, u0) = q1 iff δ∗M1

(q0, u) = q2 (because the only incoming 0 transition
into q1 is from q2) iff by induction hypothesis (condition (c)) u has odd number of 0s and odd
number of 1s iff u0 has even number of 0s and an odd number of 1s. Thus (b) has been established
for the induction step when a = 0.

• Case q = q1, a = 1: δ∗M1
(q0, u1) = q1 iff δ∗M1

(q0, u) = q0 (because the only incoming 1 transition
into q1 is from q0) iff by induction hypothesis (condition (a)) u has even number of 0s and even
number of 1s iff u1 has even number of 0s and an odd number of 1s. Thus (b) has been established
for the induction step when a = 1.

• Case q = q2, a = 0: δ∗M1
(q0, u0) = q2 iff δ∗M1

(q0, u) = q1 (because the only incoming 0 transition
into q2 is from q1) iff by induction hypothesis (condition (b)) u has even number of 0s and odd
number of 1s iff u0 has odd number of 0s and an odd number of 1s. Thus (c) has been established
for the induction step when a = 0.

1Further thought: Why do we assume that w is of the form ua, and not of the form au? Will the induction proof, as
stated go through if we assumed w to be of the form au?

4

• Case q = q2, a = 1: δ∗M1
(q0, u1) = q2 iff δ∗M1

(q0, u) = q3 (because the only incoming 1 transition
into q2 is from q3) iff by induction hypothesis (condition (d)) u has odd number of 0s and even
number of 1s iff u1 has odd number of 0s and an odd number of 1s. Thus (c) has been established
for the induction step when a = 1.

• Case q = q3, a = 0: δ∗M1
(q0, u0) = q3 iff δ∗M1

(q0, u) = q0 (because the only incoming 0 transition
into q3 is from q0) iff by induction hypothesis (condition (a)) u has even number of 0s and even
number of 1s iff u0 has odd number of 0s and an even number of 1s. Thus (d) has been established
for the induction step when a = 0.

• Case q = q3, a = 1: δ∗M1
(q0, u1) = q3 iff δ∗M1

(q0, u) = q2 (because the only incoming 1 transition
into q3 is from q2) iff by induction hypothesis (condition (c)) u has odd number of 0s and odd
number of 1s iff u1 has odd number of 0s and an even number of 1s. Thus (d) has been established
for the induction step when a = 1.

The above loooong case analysis can be simplified and shortened by carefully renaming the states and
introducing a new notation. For w ∈ {0, 1}∗ and a ∈ {0, 1}, let us denote by #a(w) the number of times the
symbol a appears in w. Let us rename q0 as (0, 0), q1 by (0, 1), q2 by (1, 1) and q3 as (1, 0). Under the new
naming, we could define M1 = (Q,Σ, δ, s, A) as follows.

• Q = {0, 1} × {0, 1}

• Σ = {0, 1}

• s = (0, 0)

• A = {(1, 1)}

• And δ defined as

δ((i, j), a) =

{
((i+ 1) mod 2, j) if a = 0
(i, (j + 1) mod 2) if a = 1

We could make the definition δ even more succinct as

δ((i, j), a) = ((i+ (1− a)) mod 2, (j + a) mod 2)

The strengthened statement that we will prove by induction can be now written as

∀w. δ∗M1
((0, 0), w) = (#0(w) mod 2,#1(w) mod 2)

Notice how much simpler this statement is when compared with conditions (a), (b), (c), and (d). The
induction proof is also suitably much shorter.

Base Case When |w| = 0, w = ε. We have

δ∗M1
((0, 0), ε) = (0, 0) = (#0(ε) mod 2,#1(ε) mod 2)

Induction Hypothesis Assume that for every w with |w| < i, we have δ∗M1
((0, 0), w) = (#0(w) mod

2,#1(w) mod 2)

Induction Step Consider w such that |w| = i, where i > 0. Without loss of generality, we can again
assume that w = ua, where a ∈ {0, 1} and u ∈ {0, 1}i−1. The proof is then completed as follows.

δ∗M1
((0, 0), w = ua) = δ∗M1

(δ∗M1
((0, 0), u), a) (Proposition 2)

= δ(δ∗M1
((0, 0), u), a) (δ∗M1

(q, a) = δ(q, a) for a ∈ {0, 1})
= δ((#0(u) mod 2,#1(u) mod 2), a) (induction hypothesis on u)
= ((#0(u) + (1− a)) mod 2, (#1(u) + a) mod 2) (definition of δ)
= (#0(ua) mod 2,#1(ua) mod 2)

5

00 01 11

10

0

1

0

1

0
1

0

1

Figure 2: Transition Diagram of M2

2.2 Example: One in second last position

Consider the DFA M2 shown Figure 2. For a string w ∈ {0, 1} let last2(w) be the last two symbols in w
defined precisely as follows.

last2(w) =

{
w if |w| < 2
ab if w = uab where u ∈ {0, 1}∗, a, b ∈ {0, 1}

We will prove that
L(M2) = L2 = {w ∈ {0, 1}∗ | last2(w) ∈ {10, 11}}

Again, unrolling the definition of L(M2), and observing that the accepting states of M2 are {10, 11}, the
above statement requires us to prove

∀w. δ∗M2
(00, w) ∈ {10, 11} iff last2(w) ∈ {10, 11} (1)

Once again, if we try to prove this statement by induction on |w| we will fail in the induction step because
it is too weak; it does not characterize when a string reaches 00 or 01.

To obtain a strengthening that can be proved by induction, we rely on our intuition about how DFA M2

works — it remembers the last two symbols seen. However, since the start state of M2 is 00, after reading
string w, the machine M2 remembers the last two symbols of 00w (and not w). Thus, the strong correctness
statement we will prove is the following.

∀w. δ∗M2
(00, w) = last2(00w) (2)

Before we prove Equation 2 by induction on |w|, let us see how it implies Equation 1 or in other words the
correctness of M2. For this we need the following lemma.

Lemma 3. For any w ∈ {0, 1}∗, last2(00w) ∈ {10, 11} iff last2(w) ∈ {10, 11}.

Proof. There are two directions to establish. Observe that if last2(w) ∈ {10, 11} then |w| ≥ 2 and hence
last2(00w) = last2(w). Conversely, observe that if |w| < 2 then last2(00w) ∈ {00, 01}. Hence, if last2(00w) ∈
{10, 11} then |w| ≥ 2 and hence (again) last2(00w) = last2(w).

We can now show that Equation 1 follows from Equation 2 because

δ∗M2
(00, w) ∈ {10, 11} iff last2(00w) ∈ {10, 11} (because of Equation 2)

iff last2(w) ∈ {10, 11} (because of Lemma 3)

We now complete the proof by showing Equation 2 by induction on |w|.

Base Case When |w| = 0, w = ε. Now, δ∗M2
(00, w = ε) = 00 = last2(00ε). This establishes the base case.

6

Induction Hypothesis Assume that δ∗M2
(00, w) = last2(00w) for all w such that |w| < i.

Induction Step Consider w such that |w| = i, for i > 0. Without loss of generality, w is of the form ua,
where u ∈ {0, 1}i−1 and a ∈ {0, 1}. Recall that we can write the transition function of M2 as

δ(ab, c) = bc = last2(abc)

Now we can complete the proof as follows.

δ∗M2
(00, w = ua) = δ∗M2

(δ∗M2
(00, u), a) (Proposition 2)

= δ(δ∗M2
((00), u), a) (δ∗M2

(q, a) = δ(q, a) for a ∈ {0, 1})
= δ(last2(00u), a) (induction hypothesis on u)
= last2(00ua) (definition of δ)

2.3 Proof Template for Proving Correctness of DFAs

Based on the above examples, we can come up with a standard template for proving correctness of DFA
constructions. Given a DFA M = (Q,Σ, δ, s, A), to prove that L(M) = L we take the following steps.

1. For each q ∈ Q, identify a language Lq.

2. Prove the following statement by induction on |w|

∀w.∀q ∈ Q. δ∗M (s, w) = q iff w ∈ Lq

3. Finally prove that L = ∪q∈ALq

The language Lq maybe only implicitly identified in the correctness statement that we prove by induction.
For example, in Section 2.1, after renaming states as (i, j) with i, j ∈ {0, 1}, the language L(i,j) = {w ∈
{0, 1}∗ |#0(w) = i and #1(w) = j} is implicit in the correctness statement.

3 Proving DFA Lower Bounds

Consider a DFA M = (Q,Σ, δ, s, A) that recognizes a language L. Suppose u, v ∈ Σ∗ are two strings such
that δ∗M (s, u) = δ∗M (s, v). Then for any string w, we have

δ∗M (s, uw) = δ∗M (δ∗M (s, u), w) (Proposition 2)
= δ∗M (δ∗M (s, v), w) (δ∗M (s, u) = δ∗M (s, v))
= δ∗M (s, vw) (Proposition 2)

Hence, for every w, either M accepts both uw and vw or rejects both uw and vw. Since M recognizes L
then means that either both uw and vw are in L or neither one is.

The contrapositive of the above observation is the following. Suppose for a language L, and strings u, v,
we have a string w such that uw ∈ L but vw 6∈ L then in every DFA M that recognizes L, u and v must go
to different states. When this happens, w is said to distinguish u and v (with respect to L). This leads to
the notion of a fooling set,

Definition 3. A fooling set for L ⊆ Σ∗ is a set F ⊆ Σ∗ such that for every u, v ∈ F such that u 6= v there
is a w such that either uw ∈ L and vw 6∈ L or uw 6∈ L and vw ∈ L.

Notice that based on our observations above we can conclude that no two strings in a fooling set F for
L can go to the same state in any DFA recognizing L. Hence if L has a fooling set F of size k, every DFA
recognizing L has at least k states. Identifying a fooling set for a language helps establish the optimality of
certain DFA designs.

7

3.1 Example: Even length strings with 2 as

Consider the language

L≥2aeven = {w ∈ {a, b}∗ | w has even length and contains at least 2 as}

This language can be recognized by a DFA that keeps track of the number of as seen (either 0, 1, or ≥ 2),
and the parity (odd or even) of the number of symbols we have seen. Thus the states of this DFA are of
the form (n, p), where n ∈ {0, 1, 2} is the number of as seen and p ∈ {e, o} is the parity of the number of
symbols seen. The transition function of this DFA is shown in Figure 3.

〈0, e〉

〈0, o〉

〈1, e〉

〈1, o〉

〈2, e〉

〈2, o〉

b b a
a

b b a
a

a, b a, b

Figure 3: DFA recognizing L≥2aeven

Now the above DFA seems to have the fewest states possible — any DFA recognizing L≥2aeven must keep
track of the two pieces of information. We can turn this intuition into a mathematical proof by constructing
a fooling set.

We can show that any DFA recognizing L≥2aeven has at least 6 states by constructing a fooling set F of
size 6. We will come up with this fooling set based on our intuition that any DFA recognizing L≥2aeven must
remember both the number of as and the parity of the length of the string. So the fooling set F will contain
strings such that any two of them will either differ in the number of as or in the parity of the length.

Let us take F = {ε, b, a, ab, aa, aab}. To finish the proof, we need to argue that F is a fooling set. For
that we need to show that all possible 15 pairs are distinguishable.

• Case u = aa and v ∈ F \ {u}. The string w = ε distinguishes u and v. This is because uw = w = aa ∈
L≥2aeven and for any v ∈ F \ {u}, vw = v 6∈ L≥2aeven.

• Case u = ε, and v ∈ {b, a, aab}. The string w = aa distinguishes any such pair. The reason is
uw = aa ∈ L≥2aeven but vw 6∈ L≥2aeven

• Case u = ε and v = ab. The string w = a distinguishes u and v. This is because uw = a 6∈ L≥2aeven while
vw = aba ∈ L≥2aeven.

• Case u = aab and v ∈ {a, b, ab}. Taking w = b, we observe that uw = aabb ∈ L≥2aeven, while vw 6∈ L≥2aeven.

• Case u = a and v ∈ {b, ab}. Taking w = a, we have uw = aa ∈ L≥2aeven while vw 6∈ L≥2aeven.

• Case u = b and v = ab. Taking w = aaa we have uw = baaa ∈ L≥2aeven but vw = abaaa 6∈ L≥2aeven.

3.2 Example: One k positions from the end

The language L2 in Section 2.2 was shown to have a 4 state DFA. One can show 4 is the fewest number of
states needed to recognize L2. In this section, we will prove a more general result — let Lk denote the set
of binary strings having a 1 k positions from the end, and we will show that any DFA recognizing Lk has at
least 2k states.

8

For a string w ∈ {0, 1}∗ define lastk(w) to be last k symbols in w. That is

lastk(w) =

{
w if |w| < k
v if w = uv where u ∈ Σ∗ and v ∈ Σk

Consider the language Lk as follows.

Lk = {w ∈ {0, 1}∗ | lastk(w) = 1u where u ∈ {0, 1}k−1}

We can define a simple DFA Mk that recognizes Lk using the same intuition as M2 for L2 — Mk will
remember the last k input symbols read. Thus formally, we have Mk = (Qk, {0, 1}, δk, sk, Ak) where

• Qk = {0, 1}k

• δk(w, a) = lastk(wa)

• sk = 0k

• A = {w ∈ {0, 1}k | w = 1u where u ∈ {0, 1}k−1}

We can prove that L(Mk) = Lk in a manner similar to Section 2.2 by showing

∀w. δ∗Mk
(0k, w) = lastk(0kw)

To show that every DFA recognizing Lk must have at least 2k states, we will construct a fooling set F
of size 2k. Our fooling set will simply be the set of all binary strings of length k, i.e., F = {0, 1}k. Notice
that F has 2k elements. To prove that F is a fooling set, let us consider any u, v ∈ F such that u 6= v.
Since u 6= v, there must be a position where u and v have different symbols. Let i be the first such position.
Without loss of generality, let us assume that u has 0 in position i, and v has 1 in position i.

Consider w = 0i−1. The strings uw and vw are as follows.

u0i−1 = . . .

k︷ ︸︸ ︷
0 . . . 0i−1

v0i−1 = . . .︸︷︷︸
i−1

1 . . .︸︷︷︸
k−i

0i−1

Thus, u0i−1 6∈ Lk and v0i−1 ∈ Lk. Hence, w distinguishes u and v with respect to Lk.

9

