Turing Machine Recap
• DFA with (infinite) tape.
• One move: read, write, move, change state.
High-level Points

• **Church-Turing thesis:** TMs are the most general computing devices. So far no counter example

• **Every TM can be represented as a string.** Think of TM as a program but in a very low-level language.

• **Universal Turing Machine** M_u that can simulate a given M on a given string w
Decision Problems

- A yes/no question over many instances
 - Given grammar G, is G ambiguous?
 - Given a TM M, does \(L(M) = \{0,1\}^* \)?
 - Given DFAs \(M_1 \) and \(M_2 \), does \(L(M_1) = L(M_2) \)?
 - Given a graph G, is G connected?
 - Given a graph G, nodes s and t, and number d, is there a path from s to t of distance d or less?
Equivalently, languages:

- \{<G> \mid <G> \text{ encodes an unambiguous grammar}\}
- \{<M> \mid L(M) = \{0,1\}^*\}
- \{<M_1> \# <M_2> \mid \text{DFAs } M_1 \text{ and } M_2, \text{ accept the same language}\}
- \{<G> \mid <G> \text{ encodes a connected graph}\}
- \{<G>\#s\#t\#d \mid <G> \text{ encodes a graph with nodes } s \text{ and } t, \text{ there is a path from } s \text{ to } t \text{ of distance } d \text{ or less}\}

Deciding membership in the language is solving the decision problem
Decidable

• A decision problem (language) is *decidable* if there is a TM that always halts that accepts the language. (The language is recursive.)

• I.e., there is an algorithm that always answers “yes” or “no” correctly.

• Note: since all finite languages are recursive, (they’re regular in fact) any decision problem with only a finite number of instances is decidable, and not well-addressed by this theory....
Example 1: decidable or not?

• Is there a substring of exactly 374 consecutive 7’s in decimal expansion of π?

• This is decidable. There is an algorithm which is correct. It is one of these:

 - Alg 1: Output "yes"
 - Alg 2: Output "no"

We just don’t know which one it is. But, there is an algorithm which will tell us which it is!
Moral

• This is nonsense
• There were no “instances” of the problem.
• It simply asks a single yes/no question.
• Not even clear what “language” corresponds to it
• Remember: decidability is for problems with many possible input instances
Example 2

• Give n, is there a substring of exactly n consecutive 7’s in π?
• Language: $\{n \mid$ decimal expansion of π contains the substring $a7^nb$, where a and b are not 7s$\}$
• Is this language decidable? Is there a halting TM for it?
• Is it r.e.? (recall: a TM that may not halt but accepts if it should)
Example 3

• Give \(n \), is there a substring of \(\text{at least } n \) consecutive 7’s in \(\pi \) ?

• Language: \(L = \{ n \mid \text{decimal expansion of } \pi \text{ contains the substring } 7^n \} \)

• Is this language decidable? Is there a halting TM for it?

• In fact, it is regular!

 (\(L \) is either all of \(\mathbb{N} \), or equals \(\{0,1,2,...,k\} \) for some fixed \(k \).)
Universal TM

• A single TM M_u that can compute anything computable!
• Takes as input
 – the \textit{description} of some other TM M
 – data w for M to run on
• Outputs
 – the results of running $M(w)$
Recap: Typical TM code:

```
11101010000100100110100100000101011.....11....11....111
```

- Begins, ends with **111**
- Transitions separated by **11**
- Fields within transition separated by **1**
- Individual fields represented by 0s
- Note: this can be viewed as a natural number
Recap: Universal TM M_u

We saw a TM M_u such that

$$L(M_u) = \{ <M> \# w \mid M \text{ accepts } w \}$$

Thus, M_u is a stored-program computer.
It reads a program $<M>$ and executes it on data w

$$L_u = L(M_u) = \{ <M> \# w \mid M \text{ accepts } w \} \text{ is r.e.}$$
High-level Points

• **Church-Turing thesis:** TMs are the most general computing devices. So far no counter example

• **Every TM can be represented as a string.** Think of TM as a program but in a very low-level language.

• **Universal Turing Machine** M_u that can simulate a given M on a given string w
Undecidability
Dtime(n)
Dtime(n log n)
Dtime(n^2)
Dtime(n^3)

P
NP
NPC

EXP

RECURSIVE

R. E.

UNDECIDABLE

this lecture

not even accepted by a TM
Undecidable Languages: Counting Argument

• Are there undecidable languages?
• Most languages are undecidable!
• Simple proof:
 – # of TMs/algorithms is countably infinite since each TM can be represented as a natural number (it’s description is a unique binary number)
 – # of languages is uncountably infinite
Is L_u decidable?

- Counting argument does not directly tell us about undecidability of specific interesting languages
- Recall $L_u = \{ <M>\#w \mid M \text{ accepts } w \}$ is r.e.
- Is L_u decidable?
Halting Problem

• Does given M halt when run on blank input?
• $L_{halt} = \{<M> \mid M \text{ halts when run on blank input}\}$
• Is L_{halt} decidable?
Who cares about halting TMs?
Who cares about halting TMs?

• Remember, TMs = programs
• Debugging is an important problem in CS
• Furthermore, virtually all math conjectures can be expressed as a halting-TM question.

Example: Goldbach’s conjecture:

Every even number > 2 is the sum of two primes.
Program Goldbach

is-sum-of-two-primes(n): boolean

FOR p ≤ q < n
 IF p, q, prime AND p+q=n THEN RETURN TRUE
RETURN FALSE

goldbach()

n = 4
WHILE is-sum-of-two-primes(n)
 n = n+2
HALT

goldbach() halts iff Goldbach’s conjecture is false
CS 125 assignment:

• Write a program that outputs “Hello world”.

 main()
 {
 printf(“Hello world”);

 }

• Can you write an auto-grader?

• If so; you can solve Goldbach’s conjecture...
goldbach()
n = 4
WHILE is-sum-of-two-primes(n)
 n = n+2
HALT

is-sum-of-two-primes(n): boolean
FOR p ≤ q < n
 IF p, q, prime AND p+q = n
 THEN RETURN TRUE
RETURN FALSE

main()
{ goldbach();
 printf("Hello world");
}

So, deciding if a program prints “Hello world” is solving goldbach’s conjecture
Deciding halting problem

- Given program \(<M>\), to determine if \(M\) halts, do the following:

```
main()
{
  \(M()\)
  printf("Hello world");
}
```

So, deciding if a program prints “Hello world” is solving the halting problem.

Using same ideas, we can show that deciding anything about code behavior is not possible.
L_u is not recursive

Two proofs

- Slick proof
- Slow proof via diagonalization and reduction
L_u is not decidable

Warm-up: Self-reference leads to paradox

- In a town there is a barber who shaves all and only those who do not shave themselves

 Who shaves the barber?

- Homogenous words: self-describing
 - English, short, polysyllabic
 Heterogenous words: non-self-describing
 - Spanish, long, monosyllabic

What kind of word is “heterogenous”?
L_u is not decidable

- Proof by contradiction
- Suppose there was an algorithm (TM) that always halted, as follows:

 $$<M> \# w \rightarrow \text{TM accept-checker} \rightarrow \text{Check if } M(w) \text{ accepts}$$

 yes, $M(w)$ accepts

 no, $M(w)$ doesn’t accept*

* remember – $M(w)$ may not halt – which is why this may be difficult

We’ll show how to use this as a subroutine to get a contradiction
L_u is not decidable

- Proof by contradiction
- Suppose there was an algorithm (TM) as follows:

$$
\text{TM accept-checker}
$$

Decides if $M(<M>)$ accepts

$Q(<M>)$ accepts iff $M(<M>)$ doesn’t accept

$Q(<M>)$ rejects iff $M(<M>)$ accepts
L_u is not decidable

TM Q

TM accept-checker
Decides if $M(<M>)$ accepts

$Q(<M>)$ accepts iff $M(<M>)$ doesn’t accept
$Q(<M>)$ rejects iff $M(<M>)$ accepts

Does $Q(<Q>)$ accept or reject?

either way, a contradiction, so assumption that accept-checker existed was wrong
L_u is not decidable: Slow proof

- Use diagonalization to prove that a specific language L_d is not r.e
- Show that if L_u is decidable then L_d is decidable which leads to contradiction
Diagonalization

• Fix alphabet to be \{0,1\}
• Recall that \{0,1\}^* is countable: we can enumerate strings as \(w_0, w_1, w_2, \ldots\)
• Recall that we established a correspondence between TMs and binary numbers hence TMs can be enumerated as \(M_0, M_1, M_2, \ldots\)
• A language \(L\) is a subset of \(\{0,1\}^*\)
List of all r.e. languages

<table>
<thead>
<tr>
<th></th>
<th>(w_0)</th>
<th>(w_1)</th>
<th>(w_2)</th>
<th>(w_3)</th>
<th>(w_4)</th>
<th>(w_5)</th>
<th>(w_6)</th>
<th>(w_7)</th>
<th>(w_8)</th>
<th>(w_9)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_0)</td>
<td>no (\cdots) no (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>(M_1)</td>
<td>yes (\cdots) no (\cdots) no (\cdots) yes (\cdots) no (\cdots) yes (\cdots) yes (\cdots) yes (\cdots) no (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>(M_2)</td>
<td>no (\cdots) yes (\cdots) yes (\cdots) no (\cdots) no (\cdots) yes (\cdots) no (\cdots) yes (\cdots) no (\cdots) no (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>(M_3)</td>
<td>no (\cdots) yes (\cdots) no (\cdots) yes (\cdots) no (\cdots) yes (\cdots) no (\cdots) yes (\cdots) yes (\cdots) no (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>(M_4)</td>
<td>yes (\cdots) yes (\cdots) yes (\cdots) yes (\cdots) no (\cdots) no (\cdots) no (\cdots) no (\cdots) no (\cdots) no (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>(M_5)</td>
<td>no (\cdots) no (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>(M_6)</td>
<td>yes (\cdots) yes (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>(M_7)</td>
<td>yes (\cdots) yes (\cdots) no (\cdots) no (\cdots) yes (\cdots) yes (\cdots) yes (\cdots) no (\cdots) no (\cdots) yes (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>(M_8)</td>
<td>no (\cdots) yes (\cdots) no (\cdots) no (\cdots) yes (\cdots) no (\cdots) yes (\cdots) yes (\cdots) yes (\cdots) no (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>(M_9)</td>
<td>no (\cdots) no (\cdots) no (\cdots) yes (\cdots) yes (\cdots) no (\cdots) yes (\cdots) no (\cdots) yes (\cdots) yes (\cdots) ...</td>
<td></td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
List of all r.e. languages

<table>
<thead>
<tr>
<th></th>
<th>w_0</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>w_6</th>
<th>w_7</th>
<th>w_8</th>
<th>w_9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>M_1</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>M_2</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>M_3</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>M_4</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>M_5</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>M_6</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>M_7</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>M_8</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>M_9</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Consider for each i, whether or not M_i accepts w_i.
List of all r.e. languages

<table>
<thead>
<tr>
<th></th>
<th>w_0</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>w_6</th>
<th>w_7</th>
<th>w_8</th>
<th>w_9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>M_1</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>M_2</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>M_3</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>M_4</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>M_5</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>M_6</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>M_7</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>M_8</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>M_9</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Flip “yes” and “no”, defining $L_d = \{w_i \mid w_i \text{ not in } L(M_i)\}$
\[L_d = \{ w_i \mid w_i \text{ not in } L(M_i) \} \]

\(L_d \) is not r.e. (Why not?)

\begin{itemize}
\item if it were, it would be accepted by some TM \(M_k \)
\item but \(L_d \) contains \(w_k \) iff \(L(M_k) \) does not contain \(w_k \)
\item so \(L_d \neq L(M_k) \) for any \(k \)
\item so \(L_d \) is not r.e.
\end{itemize}
Reduction

$X \leq Y$ "X reduces to Y"

If Y can be decided, then X can be decided.
If X can’t be decided, then Y can’t be decided.
$L_d \leq \overline{L_u}$

L_d-decider

REDUCTION \rightarrow <M, w> \rightarrow $\overline{L_u}$ decider

- YES: $M(w)$ doesn’t accept
- NO: $M(w)$ does accept
$L_d \leq \overline{L_u}$

L_d-decider

$w_i \xrightarrow{\text{REDUCTION}} <M_i, w_i> \xrightarrow{\overline{L_u} \text{ decider}}$

- YES $M_i(w_i)$ doesn’t accept
- NO $M_i(w_i)$ does accept

- The above is a reduction from L_d to complement of L_u
- Note that a language L is decidable iff \overline{L} is decidable
- Hence L_u is decidable iff $\overline{L_u}$ decidable
L_u is not decidable

- L_d is not r.e. by diagonalization
- Suppose L_u is decidable
- Then $\overline{L_u}$ is also decidable
- We have shown $L_d \leq \overline{L_u}$ which implies L_d is decidable, a contradiction
- Therefore L_u is not decidable (undecidable)
- No algorithm for L_u
Using Reductions

• Once we have some seed problems such as \(L_d \) and \(L_u \) we can use reductions to prove that more problems are undecidable
Halting Problem

• Does given M halt when run on blank input?
• $L_{halt} = \{<M> \mid M \text{ halts when run on blank input}\}$
• Show L_{halt} is undecidable by showing $L_u \leq L_{halt}$

What are input and output of the reduction?
\[L_u \leq L_{halt} \]

L_u-decider

\[\langle M \rangle \# w \]

REDUCTION \[\langle M' \rangle \]

\[L_{halt} \text{ decider} \]

Need: \(M' \) halts on blank input iff \(M(w) \) accepts

\[
\text{TM } M' \\
\text{const } M \\
\text{const } w \\
\text{run } M(w) \text{ and halt if it accepts}
\]

The REDUCTION doesn’t run \(M \) on \(w \). It produces code for \(M' \)!
Example

• Suppose we have the code for a program `isprime()` and we want to check if it accepts the number 13
• The reduction creates new program to give to decider for L_{halt}: note that the reduction only creates the code, does not run any program itself.

```c
main() {
    If (isprime(13)) then
        HALT
    else
        LOOP FOREVER
}

boolean isprime(int i) {
    ...
}
```
\[L_u \leq L_{halt} \]

\(L_u \)-decider

\[\langle M \rangle \# w \rightarrow \text{REDUCTION} \rightarrow \langle M' \rangle \rightarrow L_{halt} \text{ decider} \]

Need: \(M' \) halts on blank input iff \(M(w) \) accepts

Correctness: \(L_u \)-decider say “yes” iff \(M' \) halts on blank input

iff \(M(w) \) accepts

iff \(\langle M \rangle \# w \) is in \(L_u \)
More reductions about languages

• We’ll show other languages involving program behavior are undecidable:
 • \(L_{374} = \{ <M> \mid L(M) = \{ 0^{374} \} \} \)
 • \(L_{\neq \emptyset} = \{ <M> \mid L(M) \text{ is nonempty} \} \)
 • \(L_{\text{pal}} = \{ <M> \mid L(M) = \text{palindromes} \} \)
 • many many others
\(L_{374} = \{ <M> \mid L(M) = \{0^{374}\} \} \) is undecidable

- Given a TM \(M \), telling whether it accepts only the string \(0^{374} \) is not possible
- Proved by showing \(L_u \leq L_{374} \)

Reduction: Build \(M' \)

\[<M> \neq w \rightarrow \text{instance of } L_u\]

\[<M'> = \text{instance of } L_{374}\]

What is \(L(M') \)?
- If \(M(w) \) accepts, \(L(M') = \{0^{374}\} \)
- If \(M(w) \) doesn’t, \(L(M') = \emptyset \)

Q: How does the reduction know whether or not \(M(w) \) accepts?

A: It doesn’t have to. It just builds (code for) \(M' \).
If there is a decider \(M_{374} \) to tell if a TM accepts the language \(\{0^{374}\} \)...
\[L_{374} = \{ <M> \mid L(M) = \{0^{374}\} \} \text{ is undecidable} \]

- What about \(L_{accepts-374} = \{ <M> \mid M \text{ accepts } 0^{374} \} \)?
 - In fact, yes, since \(L_{374} \) isn’t even r.e., but \(L_{accepts-374} \) is.
 - But no, \(L_{accepts-374} \) is not decidable either.
- The same reduction works:
 - If \(M(w) \) accepts, \(L(M') = \{0^{374}\} \), so \(M' \) accepts \(0^{374} \).
 - If \(M(w) \) doesn’t, \(L(M') = \emptyset \), so \(M' \) doesn’t accept \(0^{374} \).
- More generally, telling whether or not a machine accepts any fixed string is undecidable.
$L_{\neq \emptyset} = \{ <M> \mid L(M) \text{ is nonempty} \}$ is undecidable

- Given a TM M, telling whether it accepts \textit{any} string is undecidable
- Proved by showing $L_u \leq L_{\neq \emptyset}$

\[<M> \# w\]

\[\text{instance of } L_u\]

\[\text{REDUCTION: BUILD } M'\]

\[<M'> = <M>\]

\[\text{instance of } L_{\neq \emptyset}\]

\[M' : \text{ constants: } M, w\]

On input x,

\[\text{Run } M(w)\]

Accept x if $M(w)$ accepts

We want M' to satisfy:

- If $M(w)$ accepts, $L(M') \neq \emptyset$
- If $M(w)$ doesn't, $L(M') = \emptyset$

What is $L(M')$?

- If $M(w)$ accepts, $L(M') = \Sigma^*$ hence $\neq \emptyset$
- If $M(w)$ doesn't, $L(M') = \emptyset$
If there is a decider $M \neq \emptyset$ to tell if a TM accepts a nonempty language...

Since L_u is not decidable, $M \neq \emptyset$ doesn’t exist, and $L \neq \emptyset$ is undecidable
\(L_{pal} = \{ <M> \mid L(M) = \text{palindromes} \} \) is undecidable

- Given a TM \(M \), telling whether it accepts the set of palindromes is undecidable
- Proved by showing \(L_u \leq L_{pal} \)

REDUCTION: BUILD M’

<table>
<thead>
<tr>
<th>(<M> # w)</th>
<th>instance of (L_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<M’>)</td>
<td>instance of (L_{pal})</td>
</tr>
</tbody>
</table>

We want \(M’ \) to satisfy:
- If \(M(w) \) accepts, \(L(M’) = \{\text{palindromes}\} \)
- If \(M(w) \) doesn’t \(L(M’) \neq \{\text{palindromes}\} \)

On input \(x \),
- Run \(M(w) \)
- Accept \(x \) if \(M(w) \) accepts and \(x \) is a palindrome
If there is a decider M_{pal} to tell if a TM accepts the set of palindromes

Decider for L_u

REDUCTION: BUILD M'

M': constants: M, w

On input x,

Run $M(w)$

Accept x if

$M(w)$ accepts and x is a palindrome

YES:

$L(M') = \{\text{palindromes}\}$

iff M accepts w

NO:

$L(M') = \emptyset \neq \{\text{palindromes}\}$

iff M doesn’t accept w

Since L_u is not decidable, M_{pal} doesn’t exist, and L_{pal} is undecidable
Lots of undecidable problems about languages accepted by programs

- Given M, is $L(M) = \{\text{palindromes}\}$?
- Given M, is $L(M) \neq \emptyset$?
- Given M, is $L(M) = \{0^{374}\}$?
- Given M, does $L(M)$ contain 0^{374}?
- Given M, is $L(M) = \{\text{prime numbers}\}$?
- Given M, does $L(M)$ contain any prime?
- Given M, does $L(M)$ contain any word?
- Given M, does $L(M)$ meet these formal specs?
- Given M, does $L(M) = \Sigma^*$?
Dtime(n)

Dtime(n log n)

Dtime(n^2)

Dtime(n^3)

P

NP

NPC

EXP

RECURSIVE

R. E.

UNDECIDABLE

not even accepted by a TM

SUMMARY