Here are several problems that are easy to solve in $O(n)$ time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster.

(a) Describe a fast algorithm that either computes an index i such that $A[i] = i$ or correctly reports that no such index exists.

Solution: Suppose we define a second array $B[1..n]$ by setting $B[i] = A[i] - i$ for all i. For every index i we have

so this new array is sorted in increasing order. Clearly, $A[i] = i$ if and only if $B[i] = 0$. So we can find an index i such that $A[i] = i$ by performing a binary search in B. We don't actually need to compute B in advance; instead, whenever the binary search needs to access some value $B[i]$, we can just compute $A[i] - i$ on the fly instead!

Here are two formulations of the resulting algorithm, first recursive (keeping the array A as a global variable), and second iterative.

\[
\text{\texttt{F/i.sc/n.sc/d.scM/a.sc/t.sc/c.sc/h.sc}}(\ell, r):
\]

\[
\text{if } \ell > r
\]

\[
\text{return } \text{NONE}
\]

\[
\text{mid } \leftarrow (\ell + r)/2
\]

\[
\text{if } A[\text{mid}] = \text{mid } \triangleright (B[\text{mid}] = 0)
\]

\[
\text{return } \text{mid}
\]

\[
\text{else if } A[\text{mid}] < \text{mid } \triangleright (B[\text{mid}] < 0)
\]

\[
\text{return } \text{FINDMATCH}(\ell, \text{mid} - 1)
\]

\[
\text{else } \triangleright (B[\text{mid}] > 0)
\]

\[
\text{return } \text{FINDMATCH}(\text{mid} + 1, r)
\]

\[
\text{FINDMATCH}(A[1..n]):
\]

\[
\text{hi } \leftarrow n
\]

\[
\text{lo } \leftarrow 1
\]

\[
\text{while } \text{lo} \leq \text{hi}
\]

\[
\text{mid } \leftarrow (\text{lo} + \text{hi})/2
\]

\[
\text{if } A[\text{mid}] = \text{mid } \triangleright (B[\text{mid}] = 0)
\]

\[
\text{return } \text{mid}
\]

\[
\text{else if } A[\text{mid}] < \text{mid } \triangleright (B[\text{mid}] < 0)
\]

\[
\text{lo } \leftarrow \text{mid} + 1
\]

\[
\text{else } \triangleright (B[\text{mid}] > 0)
\]

\[
\text{hi } \leftarrow \text{mid} - 1
\]

\[
\text{return } \text{NONE}
\]

In both formulations, the algorithm is binary search, so it runs in $O(\log n)$ time. ■
(b) Suppose we know in advance that $A[1] > 0$. Describe an even faster algorithm that either computes an index i such that $A[i] = i$ or correctly reports that no such index exists. [*Hint: This is really easy.*]

Solution: The following algorithm solves this problem in $O(1)$ time:

```plaintext
FindMatchPos(A[1..n]):
    if A[1] = 1
        return 1
    else
        return None
```

2. Suppose we are given an array \(A[1..n] \) such that \(A[1] \geq A[2] \) and \(A[n-1] \leq A[n] \). We say that an element \(A[x] \) is a local minimum if both \(A[x-1] \geq A[x] \) and \(A[x] \leq A[x+1] \). For example, there are exactly six local minima in the following array:

\[
\begin{array}{cccccccccccc}
9 & 7 & 7 & 2 & 1 & 3 & 7 & 5 & 4 & 7 & 3 & 3 & 4 & 8 & 6 & 9
\end{array}
\]

Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given the array above, your algorithm could return the integer 9, because \(A[9] \) is a local minimum. [Hint: With the given boundary conditions, any array must contain at least one local minimum. Why?]

Solution: The following algorithm solves this problem in \(O(\log n) \) time:

```python
def local_min(A[1..n]):
    if n < 100
        find the smallest element in A by brute force
        m ← ⌊n/2⌋
        if A[m] < A[m + 1]
            return local_min(A[1..m + 1])
        else
            return local_min(A[m .. n])
```

If \(n \) is less than 100, then a brute-force search runs in \(O(1) \) time. There's nothing special about 100 here; any other constant will do.

Otherwise, if \(A[n/2] < A[n/2 + 1] \), the subarray \(A[1..n/2 + 1] \) satisfies the precise boundary conditions of the original problem, so the recursion fairy will find local minimum inside that subarray.

Finally, if \(A[n/2] > A[n/2 + 1] \), the subarray \(A[n/2 .. n] \) satisfies the precise boundary conditions of the original problem, so the recursion fairy will find local minimum inside that subarray.

The running time satisfies the recurrence \(T(n) \leq T(\lceil n/2 \rceil + 1) + O(1) \). Except for the +1 and the ceiling in the recursive argument, which we can ignore, this is the binary search recurrence, whose solution is \(T(n) = O(\log n) \).

Alternatively, we can observe that \(\lceil n/2 \rceil + 1 < 2n/3 \) when \(n \geq 100 \), and therefore \(T(n) \leq T(2n/3) + O(1) \), which implies \(T(n) = O(\log_{3/2} n) = O(\log n) \).
3. Suppose you are given two sorted arrays $A[1..n]$ and $B[1..n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the nth smallest element) of the union $A \cup B$. For example, given the input

$$A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20] \quad B[1..8] = [2, 4, 5, 8, 17, 19, 21, 23]$$

your algorithm should return the integer 9. [Hint: What can you learn by comparing one element of A with one element of B?]

Solution: The following algorithm solves this problem in $O(\log n)$ time:

```
MEDIAN(A[1..n], B[1..n]):
  if n < 10
    use brute force
  else if A[n/2] > B[n/2]
    return MEDIAN(A[1..n/2], B[n/2+1..n])
  else
    return MEDIAN(A[n/2+1..n], B[1..n/2])
```

Suppose $A[n/2] > B[n/2]$. Then $A[n/2 + 1]$ is larger than all n elements in $A[1..n/2] \cup B[1..n/2]$, and therefore larger than the median of $A \cup B$, so we can discard the upper half of A. Similarly, $B[n/2 - 1]$ is smaller than all $n + 1$ elements of $A[n/2..n] \cup B[n/2 + 1..n]$, and therefore smaller than the median of $A \cup B$, so we can discard the lower half of B. Because we discard the same number of elements from each array, the median of the remaining subarrays is the median of the original $A \cup B$.

To think about later:

4. Now suppose you are given two sorted arrays $A[1..m]$ and $B[1..n]$ and an integer k. Describe a fast algorithm to find the kth smallest element in the union $A \cup B$. For example, given the input

$$A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20] \quad B[1..5] = [2, 5, 7, 17, 19] \quad k = 6$$

your algorithm should return the integer 7.

Solution: The following algorithm solves this problem in $O(\log \min\{k, m+n-k\}) = O(\log (m+n))$ time:

```
SELECT(A[1..m], B[1..n], k):
  if k < (m+n)/2
    return MEDIAN(A[1..k], B[1..k])
  else
    return MEDIAN(A[k-n..m], B[k-m..n])
```

Here, MEDIAN is the algorithm from problem 3 with one minor tweak. If MEDIAN wants an entry in either A or B that is outside the bounds of the original arrays, it uses the value $-\infty$ if the index is too low, or ∞ if the index is too high.