Give regular expressions for each of the following languages over the alphabet \{0, 1\}.

1. All strings containing the substring 000.

Solution: \((0 + 1)^*000(0 + 1)^*\)

2. All strings not containing the substring 000.

Solution: \((1 + 01 + 001)^*(\varepsilon + 0 + 00)\)

Solution: \((\varepsilon + 0 + 00)(1(\varepsilon + 0 + 00))^*\)

3. All strings in which every run of 0s has length at least 3.

Solution: \((1 + 000^*)^*\)

Solution: \((\varepsilon + 1)((\varepsilon + 000^*)1)^*(\varepsilon + 000^*)\)

4. All strings in which every substring 000 appears after every 1.

Solution: \((1 + 01 + 001)^*0^*\)

5. All strings containing at least three 0s.

Solution: \((0 + 1)^*0(0 + 1)^*0(0 + 1)^*0(0 + 1)^*\)

Solution (clever): \(1^*01^*01^*0(0 + 1)^*\) or \((0 + 1)^*01^*01^*01^*\)

6. Every string except 000. [Hint: Don’t try to be clever.]

Solution: Every string \(w \neq 000\) satisfies one of three conditions: Either \(|w| < 3\), or \(|w| = 3\) and \(w \neq 000\), or \(|w| > 3\). The first two cases include only a finite number of strings, so we just list them explicitly. The last case includes all strings of length at least 4.

\[
\varepsilon + 0 + 1 + 00 + 01 + 10 + 11 \\
+ 001 + 010 + 011 + 100 + 101 + 110 + 111 \\
+ (1 + 0)(1 + 0)(1 + 0)(1 + 0)(1 + 0)^*
\]

Solution (clever): \(\varepsilon + 0 + 00 + (1 + 01 + 001 + 000(1 + 0))(1 + 0)^*\)
7. All strings \(w \) such that in every prefix of \(w \), the number of \(0 \)'s and \(1 \)'s differ by at most 1.

Solution: Equivalently, strings that alternate between \(0 \)'s and \(1 \)'s: \((01 + 10)^*(\epsilon + 0 + 1)\)

*8. All strings containing at least two \(0 \)'s and at least one \(1 \).

Solution: There are three possibilities for how such a string can begin:

- Start with \(00 \), then any number of \(0 \)'s, then \(1 \), then anything.
- Start with \(01 \), then any number of \(1 \)'s, then \(0 \), then anything.
- Start with \(1 \), then a substring with exactly two \(0 \)'s, then anything.

All together: \(000^*1(0 + 1)^* + 011^*0(0 + 1)^* + 11^*01^*0(0 + 1)^* \)

Or equivalently: \((000^*1 + 011^*0 + 11^*01^*0)(0 + 1)^*\)

Solution: There are three possibilities for how the three required symbols are ordered:

- Contains a \(1 \) before two \(0 \)'s: \((0 + 1)^*1(0 + 1)^*0(0 + 1)^*0(0 + 1)^*\)
- Contains a \(1 \) between two \(0 \)'s: \((0 + 1)^*0(0 + 1)^*1(0 + 1)^*0(0 + 1)^*\)
- Contains a \(1 \) after two \(0 \)'s: \((0 + 1)^*0(0 + 1)^*0(0 + 1)^*1(0 + 1)^*\)

So putting these cases together, we get the following:

\[(0 + 1)^*1(0 + 1)^*0(0 + 1)^*0(0 + 1)^* + (0 + 1)^*0(0 + 1)^*1(0 + 1)^*0(0 + 1)^* + (0 + 1)^*0(0 + 1)^*0(0 + 1)^*1(0 + 1)^*\]

Solution (clever): \((0 + 1)^*(101^*0 + 010 + 01^*01)(0 + 1)^*\)

*9. All strings \(w \) such that in every prefix of \(w \), the number of \(0 \)'s and \(1 \)'s differ by at most 2.

Solution: \((0(01)^*1 + 1(10)^*0)^* \cdot (\epsilon + 0(01)^*(0 + \epsilon) + 1(10)^*(1 + \epsilon)) \)
10. All strings in which the substring 000 appears an even number of times. (For example, 001000 and 0000 are in this language, but 000000 is not.)

Solution: Every string in $\{0,1\}^*$ alternates between (possibly empty) blocks of 0s and individual 1s; that is, $\{0,1\}^* = (0^*1)^*0^*$. Trivially, every 000 substring is contained in some block of 0s. Our strategy is to consider which blocks of 0s contain an even or odd number of 000 substrings.

Let X denote the set of all strings in 0^* with an even number of 000 substrings. We easily observe that $X = \{0^n \mid n = 1 \text{ or } n \text{ is even}\} = 0 + (00)^*$.

Let Y denote the set of all strings in 0^* with an odd number of 000 substrings. We easily observe that $Y = \{0^n \mid n > 1 \text{ and } n \text{ is odd}\} = 000(00)^*$.

We immediately have $0^* = X + Y$ and therefore $\{0,1\}^* = ((X + Y)1)^*(X + Y)$.

Finally, let L denote the set of all strings in $\{0,1\}^*$ with an even number of 000 substrings. A string $w \in \{0,1\}^*$ is in L if and only if an odd number of blocks of 0s in w are in Y; the remaining blocks of 0s are all in X.

$$L = ((X1)^*y1 \cdot (X1)^*y1)^* (X1)^*x$$

Plugging in the expressions for X and Y gives us the following regular expression for L:

$$((0 + (00)^*)1)^* \cdot 000(00)^*1 \cdot ((0 + (00)^*)1)^* \cdot 000(00)^*1)^* \cdot ((0 + (00)^*)1)^* \cdot (0 + (00)^*)$$

Whew! ■