1. A **Moore machine** is a variant of a finite-state automaton that produces output; Moore machines are sometimes called finite-state *transducers*. For purposes of this problem, a Moore machine formally consists of six components:

- A finite set Σ called the input alphabet
- A finite set Γ called the output alphabet
- A finite set Q whose elements are called states
- A start state $s \in Q$
- A transition function $\delta : Q \times \Sigma \rightarrow Q$
- An output function $\omega : Q \rightarrow \Gamma$

More intuitively, a Moore machine is a graph with a special start vertex, where every node (state) has one outgoing edge labeled with each symbol from the input alphabet, and each node (state) is additionally labeled with a symbol from the output alphabet.

The Moore machine reads an input string $w \in \Sigma^*$ one symbol at a time. For each symbol, the machine changes its state according to the transition function δ, and then outputs the symbol $\omega(q)$, where q is the new state. Formally, we recursively define a *transducer* function $\omega^* : \Sigma^* \times Q \rightarrow \Gamma^*$ as follows:

$$\omega^*(w, q) = \begin{cases}
\epsilon & \text{if } w = \epsilon \\
\omega(\delta(a, q)) \cdot \omega^*(x, \delta(a, q)) & \text{if } w = ax
\end{cases}$$

Given input string $w \in \Sigma^*$, the machine outputs the string $\omega^*(w, s) \in \Gamma^*$. The **output language** $L^\omega(M)$ of a Moore machine M is the set of all strings that the machine can output:

$$L^\omega(M) := \{\omega^*(w, s) : w \in \Sigma^*\}$$

(a) Let M be an arbitrary Moore machine. Prove that $L^\omega(M)$ is a regular language.

(b) Let M be an arbitrary Moore machine whose input alphabet Σ and output alphabet Γ are identical. Prove that the language

$$L^= (M) = \{w \in \Sigma^* : w = \omega^*(w, s)\}$$

is regular. $L^= (M)$ consists of all strings w such that M outputs w when given input w; these are also called *fixed points* for the transducer function ω^*.

Hint: These problems are easier than they look!
2. Prove that the following languages are not regular.

 (a) \(\{ w \in \{0 + 1\}^* \mid |\#(0, w) - \#(1, w)| < 5 \} \)

 (b) Strings in \((0 + 1)^*\) in which the substrings \(00\) and \(11\) appear the same number of times.

 (c) \(\{ 0^m 1^n \mid n/m \text{ is an integer} \} \)

3. Let \(L \) be an arbitrary regular language.

 (a) Prove that the language \(\text{palin}(L) := \{ w \mid ww^R \in L \} \) is also regular.

 (b) Prove that the language \(\text{drome}(L) := \{ w \mid w^R w \in L \} \) is also regular.
Solved problem

4. Let \(L \) be an arbitrary regular language. Prove that the language \(\text{half}(L) := \{ w \mid ww \in L \} \) is also regular.

Solution: Let \(M = (\Sigma, Q, s, A, \delta) \) be an arbitrary DFA that accepts \(L \). We define a new NFA \(M' = (\Sigma, Q', s', A', \delta') \) with \(\epsilon \)-transitions that accepts \(\text{half}(L) \), as follows:

\[
Q' = (Q \times Q \times Q) \cup \{s'\}
\]
\[
s' \text{ is an explicit state in } Q'
\]
\[
A' = \{(h, h, q) \mid h \in Q \text{ and } q \in A\}
\]
\[
\delta'(s', \epsilon) = \{(s, h, h) \mid h \in Q\}
\]
\[
\delta'(h, a, q) = \{(\delta(p, a), h, \delta(q, a))\}
\]

\(M' \) reads its input string \(w \) and simulates \(M \) reading the input string \(ww \). Specifically, \(M' \) simultaneously simulates two copies of \(M \), one reading the left half of \(ww \) starting at the usual start state \(s \), and the other reading the right half of \(ww \) starting at some intermediate state \(h \).

- The new start state \(s' \) non-deterministically guesses the “halfway” state \(h = \delta^*(s, w) \) without reading any input; this is the only non-determinism in \(M' \).
- State \((p, h, q)\) means the following:
 - The left copy of \(M \) (which started at state \(s \)) is now in state \(p \).
 - The initial guess for the halfway state is \(h \).
 - The right copy of \(M \) (which started at state \(h \)) is now in state \(q \).
- \(M' \) accepts if and only if the left copy of \(M \) ends at state \(h \) (so the initial non-deterministic guess \(h = \delta^*(s, w) \) was correct) and the right copy of \(M \) ends in an accepting state.

\[\blacksquare \]