
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

Graphs and graph search
(BFS/DFS/SCC)
Lecture 16
Tuesday, October 18, 2022

LATEXed: October 18, 2022 09:58

1 / 64

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

16.1
Graph Basics
FLNAME:16.1.0.0 ZZZ:16.1.0.0 Graph Basics

2 / 64

Why Graphs?

1. Graphs help model networks which are ubiquitous: transportation networks (rail,
roads, airways), social networks (interpersonal relationships), information networks
(web page links), and many problems that don’t even look like graph problems.

2. Fundamental objects in Computer Science, Optimization, Combinatorics

3. Many important and useful optimization problems are graph problems

4. Graph theory: elegant, fun and deep mathematics

3 / 64

Graph

Definition 16.1.
An undirected (simple) graph G = (V ,E) is a
2-tuple:

1. V is a set of vertices (also referred to as
nodes/points)

2. E is a set of edges where each edge e ∈ E is a
set of the form {u, v} with u, v ∈ V and
u ̸= v . Use shorthand uv = {u, v}.

Example 16.2.
In figure, G = (V ,E) where V = {1, 2, 3, 4, 5, 6, 7, 8} and
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7},
{3, 8}, {4, 5}, {5, 6}, {7, 8}}.

4 / 64

Example: Modeling Problems as Search

State Space Search
Many search problems can be modeled as search on a graph.
The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals

▶ Three missionaries, three cannibals, one boat, one river

▶ Boat carries two people, must have at least one person

▶ Must all get across

▶ At no time can cannibals outnumber missionaries

How is this a graph search problem?
What are the vertices?
What are the edges?

5 / 64

Cannibals and Missionaries: Is the language empty?

MMMCCCb_ MMCC_MCb
MC

MMMCCb_C

M

MMM_CCCb
CC

MMMCb_CC C

MC_MMCCb
MM

MMCCb_MC MC

CC_MMMCbMM

CCCb_MMM C

C_MMMCCb

CCb_MMMC

_MMMCCCb

CC

C

 CC

MMMCC_Cb

C

MMMC_CCb

CC C

Problems goes back to 800 CE
Versions with brothers and sisters.
Jealous Husbands.
All bad names to a simple problem...

6 / 64

Problems on DFAs and NFAs sometimes are just problems on

graphs

1. M : DFA/NFA is L(M) empty?

2. M : DFA is L(M) = Σ∗?

3. M : DFA, and a string w . Does M accepts w?

4. N : NFA, and a string w . Does N accepts w?

7 / 64

Exercise

State the following problems as graph problems, and describe an algorithm that solves
them (we will solve them later on in the course):

1. M : DFA, is L(M) infinite?

2. N : NFA, is L(M) finite?

3. M : DFA/NFA, compute the shortest word in L(M)?

4. M : DFA, if L(M) is finite, compute the longest word w ∈ L(M)?

[Solutions would probably not be recorded for these questions (lack of time).]

8 / 64

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

16.1.1
Graph notation and representation
FLNAME:16.1.1.0 ZZZ:16.1.1.0 Graph notation and representation

9 / 64

Notation and Convention

Notation
An edge in an undirected graphs is an unordered pair of nodes and hence it is a set.
Conventionally we use uv for {u, v} when it is clear from the context that the graph is
undirected.

1. u and v are the end points of an edge {u, v}
2. Multi-graphs allow

2.1 loops which are edges with the same node appearing as both end points
2.2 multi-edges: different edges between same pairs of nodes

3. In this class we will assume that a graph is a simple graph unless explicitly stated
otherwise.

10 / 64

Graph Representation I

Adjacency Matrix

Represent G = (V ,E) with n vertices and m edges using a n× n adjacency matrix A
where

1. A[i , j] = A[j , i] = 1 if {i , j} ∈ E and A[i , j] = A[j , i] = 0 if {i , j} ̸∈ E .

2. Advantage: can check if {i , j} ∈ E in O(1) time

3. Disadvantage: needs Ω(n2) space even when m ≪ n2

11 / 64

Graph adjacency matrix example [10 vertices]
1

3

9

4

6

7

5

10

8

2

1 2 3 4 5 6 7 8 9 10

1 0 0 1 1 0 0 0 0 1 0
2 0 0 0 0 0 0 1 1 0 1
3 1 0 0 0 1 1 1 0 0 0
4 1 0 0 0 0 1 0 0 0 1
5 0 0 1 0 0 1 0 1 1 0
6 0 0 1 1 1 0 1 0 0 0
7 0 1 1 0 0 1 0 0 0 1
8 0 1 0 0 1 0 0 0 1 0
9 1 0 0 0 1 0 0 1 0 0
10 0 1 0 1 0 0 1 0 0 0

12 / 64

Graph Representation II

Adjacency Lists

Represent G = (V ,E) with n vertices and m edges using adjacency lists:

1. For each u ∈ V , Adj(u) = {v | {u, v} ∈ E}, that is neighbors of u.
Sometimes Adj(u) is the list of edges incident to u.

2. Advantage: space is O(m + n)
3. Disadvantage: cannot “easily” determine in O(1) time whether {i , j} ∈ E

3.1 By sorting each list, one can achieve O(log n) time
3.2 By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are represented using plain
vanilla (unsorted) adjacency lists.

13 / 64

Graph adjacency list example [10 vertices]
1

3

9

4

6

7

5

10

8

2

vertex adjacency list

1 3, 4, 9
2 7, 8, 10
3 1, 5, 6, 7
4 1, 6, 10
5 3, 6, 8, 9
6 3, 4, 5, 7
7 2, 3, 6, 10
8 2, 5, 9
9 1, 5, 8
10 2, 4, 7

14 / 64

Graph adjacency matrix+list example [10 vertices]
1

3

9

4

6

7

5

10

8

2

vertex adjacency list

1 3, 4, 9
2 7, 8, 10
3 1, 5, 6, 7
4 1, 6, 10
5 3, 6, 8, 9
6 3, 4, 5, 7
7 2, 3, 6, 10
8 2, 5, 9
9 1, 5, 8
10 2, 4, 7

1 2 3 4 5 6 7 8 9 10

1 0 0 1 1 0 0 0 0 1 0
2 0 0 0 0 0 0 1 1 0 1
3 1 0 0 0 1 1 1 0 0 0
4 1 0 0 0 0 1 0 0 0 1
5 0 0 1 0 0 1 0 1 1 0
6 0 0 1 1 1 0 1 0 0 0
7 0 1 1 0 0 1 0 0 0 1
8 0 1 0 0 1 0 0 0 1 0
9 1 0 0 0 1 0 0 1 0 0
10 0 1 0 1 0 0 1 0 0 0

15 / 64

Graph adjacency matrix example [20 vertices]

1

20

147

4

8

1817

9 13

6

16 1512 19

10

11

2

5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
2 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0
7 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
8 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1
11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0
12 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
13 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
14 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
15 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0
16 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0
17 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
18 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
19 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
20 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

16 / 64

Graph adjacency matrix example [40 vertices]

1

34

36

24

6

27

40

4

28 8

19 30

26

29

9

10

35

16

25

2

122223

3338

37

13

17 15

20

32

11

39

31

14

5

18

21

3

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
12 0 1 0 1 0 0 0 1 1 0 0
13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
15 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
19 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
21 0 0 1 0 1 0 0 0 0 0 0 1 0 0
22 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0
23 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
25 0 0 0 0 1 0 1 0 0 1 0 0 1 0
26 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 1 0 0 0 0 1 0 1
28 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
29 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
33 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0
34 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
35 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
36 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
39 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

17 / 64

Graph adjacency list example [40 vertices]

1

34

36

24

6

27

40

4

28 8

19 30

26

29

9

10

35

16

25

2

122223

3338

37

13

17 15

20

32

11

39

31

14

5

18

21

3

7

vertex adjacency list

1 6, 24, 34, 36
2 12, 22, 23, 29
3 14, 15, 21
4 8, 19, 28, 36
5 6, 24, 25, 27
6 1, 5, 7, 23
7 6, 25, 32, 39
8 4, 19, 30
9 10, 16, 28, 35
10 9, 25, 27, 35
11 13, 15, 33, 34
12 2, 33, 37, 38
13 11, 15, 17, 25
14 3, 22, 40
15 3, 11, 13, 22
16 9, 20, 23, 33
17 13, 20, 32, 34
18 20, 30, 34, 40
19 4, 8, 31, 37
20 16, 17, 18, 35
21 3, 31, 38
22 2, 14, 15
23 2, 6, 16, 26
24 1, 5, 31, 38
25 5, 7, 10, 13
26 23, 29
27 5, 10, 40
28 4, 9, 30, 36
29 2, 26
30 8, 18, 28
31 19, 21, 24, 37
32 7, 17, 37, 39
33 11, 12, 16, 39
34 1, 11, 17, 18
35 9, 10, 20, 36
36 1, 4, 28, 35
37 12, 19, 31, 32
38 12, 21, 24, 39
39 7, 32, 33, 38
40 14, 18, 27

18 / 64

A Concrete Representation

▶ Assume vertices are numbered arbitrarily as {1, 2, . . . , n}.
▶ Edges are numbered arbitrarily as {1, 2, . . . ,m}.
▶ Edges stored in an array/list of size m. E [j] is j th edge with info on end points

which are integers in range 1 to n.
▶ Array Adj of size n for adjacency lists. Adj [i] points to adjacency list of vertex i .

Adj [i] is a list of edge indices in range 1 to m.

19 / 64

A Concrete Representation

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

20 / 64

A Concrete Representation: Advantages

▶ Edges are explicitly represented/numbered. Scanning/processing all edges easy to
do.

▶ Representation easily supports multigraphs including self-loops.

▶ Explicit numbering of vertices and edges allows use of arrays: O(1)-time
operations are easy to understand.

▶ Can also implement via pointer based lists for certain dynamic graph settings.

21 / 64

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

16.2
Connectivity
FLNAME:16.2.0.0 ZZZ:16.2.0.0 Connectivity

22 / 64

Connectivity

Given a graph G = (V ,E):

1. path: sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 ∈ E for
1 ≤ i ≤ k − 1. The length of the path is k − 1 (the number of edges in the
path) and the path is from v1 to vk . Note: a single vertex u is a path of length 0.

2. cycle: sequence of distinct vertices v1, v2, . . . , vk such that {vi , vi+1} ∈ E for
1 ≤ i ≤ k − 1 and {v1, vk} ∈ E . Single vertex not a cycle according to this
definition.
Caveat: Some times people use the term cycle to also allow vertices to be
repeated; we will use the term tour.

3. A vertex u is connected to v if there is a path from u to v .
4. The connected component of u, con(u), is the set of all vertices connected to u.

Is u ∈ con(u)?

23 / 64

Connectivity contd
Define a relation C on V × V as uCv if u is con-
nected to v
1. In undirected graphs, connectivity is a reflexive,

symmetric, and transitive relation. Connected
components are the equivalence classes.

2. Graph is connected if there is only one
connected component.

1

2 3

4 5

6

7

8

9

10

24 / 64

Connectivity Problems

Algorithmic Problems
1. Given graph G and nodes u and v , is u connected to v?
2. Given G and node u, find all nodes that are connected to u.
3. Find all connected components of G .

Can be accomplished in O(m + n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is good to understand
on its own.

25 / 64

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

16.3
Computing connected components in
undirected graphs using basic graph search
FLNAME:16.3.0.0 ZZZ:16.3.0.0 Computing connected components in undirected graphs using basic graph search

26 / 64

Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.
Explore(G,u):

Visited [1 . . n]← FALSE
// ToExplore, S: Lists

Add u to ToExplore and to S
Visited [u]← TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge xy in Adj(x) do

if (Visited [y] = FALSE)
Visited [y]← TRUE
Add y to ToExplore
Add y to S

Output S

27 / 64

Example
1

2 3

4 5

6

7

8

9

10

28 / 64

Properties of Basic Search

Proposition 16.1.
Explore(G , u) terminates with S = con(u).

Proof Sketch.
▶ Once Visited [i] is set to TRUE it never changes. Hence a node is added only

once to ToExplore. Thus algorithm terminates in at most n iterations of while
loop.

▶ By induction on iterations, can show v ∈ S ⇒ v ∈ con(u)
▶ Since each node v ∈ S was in ToExplore and was explored, no edges in G leave

S . Hence no node in V − S is in con(u).
▶ Thus S = con(u) at termination.

29 / 64

Properties of Basic Search

Proposition 16.2.
Explore(G , u) terminates in O(m + n) time.

Proof: easy exercise

BFS and DFS are special case of BasicSearch.

1. Breadth First Search (BFS): use queue data structure to implementing the list
ToExplore

2. Depth First Search (DFS): use stack data structure to implement the list
ToExplore

30 / 64

Search Tree

One can create a natural search tree T rooted at u during search.

Explore(G,u):
array Visited [1..n]
Initialize: Visited [i]← FALSE for i = 1, . . . , n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u]← TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] = FALSE)
Visited [y]← TRUE
Add y to ToExplore
Add y to S
Add y to T with x as its parent

Output S

T is a spanning tree of con(u) rooted at u

31 / 64

Finding all connected components

Exercise: Modify Basic Search to find all connected components of a given graph G in
O(m + n) time.

32 / 64

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

16.4
Directed Graphs and Directed Connectivity
FLNAME:16.4.0.0 ZZZ:16.4.0.0 Directed Graphs and Directed Connectivity

33 / 64

Directed Graphs

Definition 16.1.
A directed graph G = (V ,E) consists
of

1. set of vertices/nodes V and

2. a set of edges/arcs E ⊆ V × V .

AB C

DE F

G H

An edge is an ordered pair of vertices. (u, v) different from (v , u).

34 / 64

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1. Road networks with one-way streets.

2. Web-link graph: vertices are web-pages and there is an edge from page p to page
p′ if p has a link to p′. Web graphs used by Google with PageRank algorithm to
rank pages.

3. Dependency graphs in variety of applications: link from x to y if y depends on x .
Make files for compiling programs.

4. Program Analysis: functions/procedures are vertices and there is an edge from x to
y if x calls y .

35 / 64

Directed Graph Representation

Graph G = (V ,E) with n vertices and m edges:

1. Adjacency Matrix: n × n asymmetric matrix A. A[u, v] = 1 if (u, v) ∈ E and
A[u, v] = 0 if (u, v) ̸∈ E . A[u, v] is not same as A[v , u].

2. Adjacency Lists: for each node u, Out(u) (also referred to as Adj(u)) and
In(u) store out-going edges and in-coming edges from u.

Default representation is adjacency lists.

36 / 64

A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs easily extends to
directed graphs.

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

37 / 64

Directed Connectivity

Given a graph G = (V ,E):

1. A (directed) path is a sequence of distinct vertices v1, v2, . . . , vk such that
(vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1 and the path
is from v1 to vk .
By convention, a single node u is a path of length 0.

2. A cycle is a sequence of distinct vertices v1, v2, . . . , vk such that (vi , vi+1) ∈ E
for 1 ≤ i ≤ k − 1 and (vk , v1) ∈ E .
By convention, a single node u is not a cycle.

3. A vertex u can reach v if there is a path from u to v . Alternatively v can be
reached from u

4. Let rch(u) be the set of all vertices reachable from u.

38 / 64

Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

AB C

DE F

G H

Questions:

1. Is there a notion of connected components?

2. How do we understand connectivity in directed graphs?

39 / 64

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

16.4.1
Strong connected components
FLNAME:16.4.1.0 ZZZ:16.4.1.0 Strong connected components

40 / 64

Connectivity and Strong Connected Components

Definition 16.2.
Given a directed graph G , u is strongly connected to v if u can reach v and v can
reach u. In other words v ∈ rch(u) and u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition 16.3.
C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.

41 / 64

Strongly Connected Components: Example

AB C

DE F

G H

42 / 64

Strongly Connected Components: Example

AB C

DE F

G H

42 / 64

Strongly Connected Components: Example

AB C

DE F

G H

42 / 64

Strongly Connected Components: Example

AB C

DE F

G H

42 / 64

Strongly Connected Components: Example

AB C

DE F

G H

42 / 64

Directed Graph Connectivity Problems

1. Given G and nodes u and v , can u reach v?
2. Given G and u, compute rch(u).
3. Given G and u, compute all v that can reach u, that is all v such that

u ∈ rch(v).
4. Find the strongly connected component containing node u, that is SCC(u).
5. Is G strongly connected (a single strong component)?

6. Compute all strongly connected components of G .

43 / 64

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

16.4.2
Graph exploration in directed graphs
FLNAME:16.4.2.0 ZZZ:16.4.2.0 Graph exploration in directed graphs

44 / 64

Basic Graph Search in Directed Graphs

Given G = (V ,E) a directed graph and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i]← FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u]← TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y] = FALSE)
Visited [y]← TRUE
Add y to ToExplore
Add y to S
Add y to T with edge (x, y)

Output S

45 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Example

AB C

DE F

G H

46 / 64

Properties of Basic Search

Proposition 16.4.
Explore(G , u) terminates with S = rch(u).

Proof Sketch.
▶ Once Visited [i] is set to TRUE it never changes. Hence a node is added only

once to ToExplore. Thus algorithm terminates in at most n iterations of while
loop.

▶ By induction on iterations, can show v ∈ S ⇒ v ∈ rch(u)
▶ Since each node v ∈ S was in ToExplore and was explored, no edges in G leave

S . Hence no node in V − S is in rch(u). Caveat: In directed graphs edges can
enter S .

▶ Thus S = rch(u) at termination.

47 / 64

Properties of Basic Search

Proposition 16.5.
Explore(G , u) terminates in O(m + n) time.

Proposition 16.6.
T is a search tree rooted at u containing S with edges directed away from root to
leaves.

Proof: easy exercises

BFS and DFS are special case of Basic Search.

1. Breadth First Search (BFS): use queue data structure to implementing the list
ToExplore

2. Depth First Search (DFS): use stack data structure to implement the list
ToExplore

48 / 64

Exercise

Prove the following:

Proposition 16.7.
Let S = rch(u). There is no edge (x, y) ∈ E where x ∈ S and y ̸∈ S .

Describe an example where rch(u) ̸= V and there are edges from V \ rch(u) to
rch(u).

49 / 64

Directed Graph Connectivity Problems

1. Given G and nodes u and v , can u reach v?
2. Given G and u, compute rch(u).
3. Given G and u, compute all v that can reach u, that is all v such that

u ∈ rch(v).
4. Find the strongly connected component containing node u, that is SCC(u).
5. Is G strongly connected (a single strong component)?

6. Compute all strongly connected components of G .

First five problems can be solved in O(n + m) time by via Basic Search (or
BFS/DFS). The last one can also be done in linear time but requires a rather clever
DFS based algorithm.

50 / 64

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

16.5
Algorithms via Basic Search
FLNAME:16.5.0.0 ZZZ:16.5.0.0 Algorithms via Basic Search

51 / 64

Algorithms via Basic Search - I

1. Given G and nodes u and v , can u reach v?
2. Given G and u, compute rch(u).

Use Explore(G , u) to compute rch(u) in O(n + m) time.

52 / 64

Algorithms via Basic Search - II

1. Given G and u, compute all v that can reach u, that is all v such that
u ∈ rch(v). Naive: O(n(n + m))

Definition 16.1 (Reverse graph.).

Given G = (V ,E), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1. Correctness: exercise

2. Running time: O(n + m) to obtain G rev from G and O(n + m) time to
compute rch(u) via Basic Search. If both Out(v) and In(v) are available at each
v then no need to explicitly compute G rev . Can do Explore(G , u) in G rev

implicitly.

53 / 64

Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1. Find the strongly connected component containing node u. That is, compute

SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and Explore(G rev , u).
Total O(n + m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

54 / 64

SCC I: Graph G and its reverse graph Grev

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reverse graph Grev

55 / 64

SCC II: Graph G a vertex F
.. and its reachable set rch(G, F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reachable set of vertices from F

56 / 64

SCC III: Graph G a vertex F
.. and the set of vertices that can reach it in G: rch(Grev, F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

Set of vertices that can reach F ,
computed via DFS in the reverse graph

G rev.

57 / 64

SCC IV: Graph G a vertex F and...
its strong connected component in G: SCC(G, F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

rch(G,F)

AB C

DE F

G H

rch(Grev,F)

AB C

DE F

G H

SCC(G,F)
= rch(G,F) ∩ rch(Grev,F)

58 / 64

Algorithms via Basic Search - IV

1. Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .

59 / 64

Algorithms via Basic Search - V

1. Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the other
strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

60 / 64

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2022

16.6
Exercise: Modefling problems using graphs
FLNAME:16.6.0.0 ZZZ:16.6.0.0 Exercise: Modefling problems using graphs

61 / 64

Modeling Problems as Search

Algorithms Lecture 23: Basic Graph Algorithms [Fa’14]

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

A typical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

Describe and analyze an algorithm to compute the smallest number of moves required for the
token to reach the last square of the grid.

9. The following puzzle was invented by the infamous Mongolian puzzle-warrior Vidrach Itky Leda in
the year 1473. The puzzle consists of an n⇥ n grid of squares, where each square is labeled with a
positive integer, and two tokens, one red and the other blue. The tokens always lie on distinct
squares of the grid. The tokens start in the top left and bottom right corners of the grid; the goal
of the puzzle is to swap the tokens.

In a single turn, you may move either token up, right, down, or left by a distance determined by
the other token. For example, if the red token is on a square labeled 3, then you may move the
blue token 3 steps up, 3 steps left, 3 steps right, or 3 steps down. However, you may not move a
token off the grid or to the same square as the other token.

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

A five-move solution for a 4⇥ 4 Vidrach Itky Leda puzzle.

Describe and analyze an efficient algorithm that either returns the minimum number of moves
required to solve a given Vidrach Itky Leda puzzle, or correctly reports that the puzzle has no
solution. For example, given the puzzle above, your algorithm would return the number 5.

10. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil racing
game that Jeff played on the bus in 5th grade.4 The game is played with a track drawn on a sheet
of graph paper. The players alternately choose a sequence of grid points that represent the motion
of a car around the track, subject to certain constraints explained below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A subset of
grid squares is marked as the starting area, and another subset is marked as the finishing area.

4The actual game is a bit more complicated than the version described here. See http://harmmade.com/vectorracer/ for an
excellent online version.

10

62 / 64

Undirected vs Directed Connectivity

Consider following problem.

▶ Given undirected graph G = (V ,E).

▶ Two subsets of nodes R ⊂ V (red nodes) and B ⊂ V (blue nodes). R and B
non-empty.

▶ Describe linear-time algorithm to decide whether every red node can reach every
blue node.

How does the problem differ in directed graphs?

63 / 64

Undirected vs Directed Connectivity

Consider following problem.

▶ Given directed graph G = (V ,E).

▶ Two subsets of nodes R ⊂ V (red nodes) and B ⊂ V (blue nodes).

▶ Describe linear-time algorithm to decide whether every red node can be reached by
some blue node.

64 / 64

	Graph Basics
	Graph notation and representation

	Connectivity
	Computing connected components in undirected graphs using basic graph search
	Directed Graphs and Directed Connectivity
	Strong connected components
	Graph exploration in directed graphs

	Algorithms via Basic Search
	Exercise: Modefling problems using graphs

