CS/ECE 374, Fall 2020

NP and NP Completeness

Lecture 23 Tuesday, December 1, 2020

LATEXed: October 27, 2020 13:58

CS/ECE 374, Fall 2020

23.1

NP-Completeness: Cook-Levin Theorem

CS/ECE 374, Fall 2020

23.1.1 Completeness

NP: Non-deterministic polynomial

Definition 23.1.

A decision problem is in NP, if it has a polynomial time certifier, for all the all the YES instances.

Definition 23.2.

A decision problem is in **co-NP**, if it has a polynomial time certifier, for all the NO instances.

Example 23.3.

- 1. **3SAT** is in **NP**.
- 2. But **Not3SAT** is in **co-NP**.

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- 1. Hardest problem must be in **NP**.
- 2. Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition 23.4.

A problem **X** is said to be **NP-Complete** if

- 1. $X \in \mathbb{NP}$, and
- 2. (Hardness) For any $Y \in NP$, $Y <_P X$.

Solving **NP-Complete** Problems

Proposition 23.5.

Suppose X is NP-Complete. Then X can be solved in polynomial time \iff P = NP.

Proof.

- \Rightarrow Suppose **X** can be solved in polynomial time
 - 0.1 Let $Y \in \mathbb{NP}$. We know $Y \leq_{P} X$.
 - 0.2 We showed that if $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$ and \mathbf{X} can be solved in polynomial time, then \mathbf{Y} can be solved in polynomial time.
 - 0.3 Thus, every problem $Y \in \mathbb{NP}$ is such that $Y \in P$.
 - $0.4 \implies NP \subseteq P$.
 - 0.5 Since $P \subseteq NP$, we have P = NP.
- \leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

NP-Hard Problems

Definition 23.6.

A problem X is said to be NP-Hard if

1. (Hardness) For any $Y \in \mathbb{NP}$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.

If X is NP-Complete

- 1. Since we believe $P \neq NP$,
- 2. and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- 1. Since we believe $P \neq NP$,
- 2. and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- 1. Since we believe $P \neq NP$,
- 2. and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- 1. Since we believe $P \neq NP$,
- 2. and solving X implies P = NP.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

THE END

...

(for now)

CS/ECE 374, Fall 2020

23.1.2 SAT is NP-Complete

NP-Complete Problems

Question

Are there any problems that are **NP-Complete**?

Answer

Yes! Many, many problems are **NP-Complete**.

Cook-Levin Theorem

Theorem 23.7 (Cook-Levin).

SAT is NP-Complete.

Need to show

- 1. SAT is in NP
- 2. every **NP** problem **X** reduces in polynomial time to **SAT**.

Might see proof later...

Steve Cook won the Turing award for his theorem.

Cook-Levin Theorem

Theorem 23.7 (Cook-Levin).

SAT is NP-Complete.

Need to show

- 1. SAT is in NP.
- 2. every **NP** problem **X** reduces in polynomial time to **SAT**.

Might see proof later...

Steve Cook won the Turing award for his theorem.

THE END

...

(for now)

CS/ECE 374, Fall 2020

23.1.3 Other NP Complete Problems

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- 1. Show that **X** is in **NP**.
- 2. Give a polynomial-time reduction $\underline{\text{from}}$ a known **NP-Complete** problem such as **SAT** to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- 1. Show that **X** is in **NP**.
- 2. Give a polynomial-time reduction $\underline{\text{from}}$ a known **NP-Complete** problem such as **SAT** to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- 1. Show that **X** is in **NP**.
- 2. Give a polynomial-time reduction $\underline{\text{from}}$ a known **NP-Complete** problem such as **SAT** to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

- ▶ 3-SAT is in *NP*
- \triangleright SAT $<_P$ 3-SAT as we saw

NP-Completeness via Reductions

- 1. **SAT** is **NP-Complete** due to Cook-Levin theorem
- 2. SAT \leq_P 3-SAT
- 3. 3-SAT \leq_P Independent Set
- 4. Independent Set \leq_P Vertex Cover
- 5. Independent Set \leq_P Clique
- 6. 3-SAT \leq_P 3-Color
- 7. 3-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

NP-Completeness via Reductions

- 1. **SAT** is **NP-Complete** due to Cook-Levin theorem
- 2. SAT \leq_P 3-SAT
- 3. 3-SAT \leq_P Independent Set
- 4. Independent Set \leq_P Vertex Cover
- 5. Independent Set \leq_P Clique
- 6. 3-SAT \leq_P 3-Color
- 7. 3-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.2

Reducing **3-SAT** to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer **k**.

Question: Is there an independent set in G of size *k*?

Lemma 23.1.

Independent set is in NP

Independent Set

Problem: Independent Set

Instance: A graph G, integer **k**.

Question: Is there an independent set in G of size *k*?

Lemma 23.1.

Independent set is in NP.

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of

size k if and only if φ is satisfiable.

 $extbf{\emph{G}}_{arphi}$ should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of

size k if and only if φ is satisfiable.

 $extbf{\emph{G}}_{arphi}$ should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ

Goal: Construct a graph ${m G}_{\!arphi}$ and number ${m k}$ such that ${m G}_{\!arphi}$ has an independent set of

size k if and only if φ is satisfiable.

 $extbf{\emph{G}}_{arphi}$ should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

1. G_{φ} will have one vertex for each literal in a clause

- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

- 1. G_{ω} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

- 1. G_{ω} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

- 1. G_{ω} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

- 1. G_{ω} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take k to be the number of clauses

Correctness

Proposition 23.2.

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- \Rightarrow Let **a** be the truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under **a**, from each triangle. This is an independent set of the appropriate size. Why?

Correctness

Proposition 23.2.

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let **a** be the truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under **a**, from each triangle. This is an independent set of the appropriate size. Why?

Correctness

Proposition 23.2.

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \leftarrow Let **S** be an independent set of size **k**
 - 1. **S** must contain exactly one vertex from each clause
 - 2. **S** cannot contain vertices labeled by conflicting literals
 - 3. Thus, it is possible to obtain a truth assignment that makes in the literals in *S* true; such an assignment satisfies one literal in every clause

Summary

Theorem 23.3.

Independent set is NP-Complete (i.e., NPC).

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.3

NP-Completeness of Hamiltonian Cycle

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.3.1

Reduction from 3SAT to Hamiltonian Cycle: Basic idea

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does **G** have a Hamiltonian cycle?

► A Hamiltonian cycle is a cycle in the graph that visits every vertex in **G** exactly once

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does **G** have a Hamiltonian cycle?

▶ A Hamiltonian cycle is a cycle in the graph that visits every vertex in
 G exactly once

Is the following graph Hamiltonian?

- (A) Yes.
- **(B)** No.

Directed Hamiltonian Cycle is **NP-Complete**

- ▶ Directed Hamiltonian Cycle is in **NP**: exercise
- ► Hardness: We will show 3SAT \leq_P Directed Hamiltonian Cycle.

- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable
 - $ightharpoonup G_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable
 - $ightharpoonup G_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable
 - $lackbox{m{G}}_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

- 1. To show reduction, we next describe an algorithm:
 - Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable
 - $ightharpoonup G_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{arphi}$ has a Hamiltonian cycle if and only if arphi is satisfiable
 - $ightharpoonup G_{\varphi}$ should be constructible from φ by a polynomial time algorithm ${\cal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 01$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 1$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

 $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

$$x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

THE END

. . .

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.3.2

The reduction: Encoding the formula constraints

3SAT \leq_P Directed Hamiltonian Cycle

Input: φ formula.
Output: Graph G_{φ} .

Saw: How to encode assignments... Now need to encode constraints of φ .

Converting φ to a graph

- ▶ Traverse path i from left to right iff x_i is set to true
- Each path has 3(m+1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to 3m+3)

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.3.3

If there is a satisfying assignment, then there is a Hamiltonian cycle

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

Reduction: Satisfying assignment ⇒ Hamiltonian cycle

Satisfying assignment: $\emph{x}_1=\emph{0},~\emph{x}_2=\emph{1},~\emph{x}_3=\emph{0},~\emph{x}_4=\emph{1}$

Reduction: Satisfying assignment ⇒ Hamiltonian cycle

Satisfying assignment: $\emph{x}_1=\emph{0},~\emph{x}_2=\emph{1},~\emph{x}_3=\emph{0},~\emph{x}_4=\emph{1}$

Reduction: Satisfying assignment ⇒ Hamiltonian cycle

Satisfying assignment: $\emph{x}_1=\emph{0},~\emph{x}_2=\emph{1},~\emph{x}_3=\emph{0},~\emph{x}_4=\emph{1}$

Reduction: Satisfying assignment ⇒ Hamiltonian cycle

Satisfying assignment: $\emph{x}_1=\emph{0},~\emph{x}_2=\emph{1},~\emph{x}_3=\emph{0},~\emph{x}_4=\emph{1}$

Reduction: Satisfying assignment ⇒ Hamiltonian cycle

Satisfying assignment: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

Conclude: If φ has a satisfying assignment then there is an Hamiltonian cycle in G_{φ} .

Correctness Proof

Lemma 23.1.

arphi has a satisfying assignment $lpha \implies \mathbf{G}_{\!arphi}$ has a Hamiltonian cycle.

Proof.

Let a be the satisfying assignment for φ . Define Hamiltonian cycle as follows

- ▶ If $\alpha(x_i) = 1$ then traverse path *i* from left to right
- ▶ If $\alpha(x_i) = 0$ then traverse path *i* from right to left
- ► For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause
- ► Clearly, resulting cycle is Hamiltonian.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.3.4

If there is a Hamiltonian cycle \implies

∃satisfying assignment

Reduction: Hamiltonian cycle $\implies \exists$ satisfying assignment

We are given a Hamiltonian cycle in G_{φ} :

Want to extract satisfying assignment...

Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle

Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle

Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle

Reduction: Hamiltonian cycle $\implies \exists$ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle

Conclude: Hamiltonian cycle must go through each row completely from left to right, or right to left. As such, can be interpreted as a valid assignment.

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - ▶ If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- ightharpoonup Similarly, if Π enters c_j from vertex 3j+1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

- \triangleright Thus, vertices visited immediately before and after C_i are connected by an edge
- ightharpoonup We can remove c_j from cycle, and get Hamiltonian cycle in $G-c_j$
- ▶ Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

- Thus, vertices visited immediately before and after
 C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_j$
- Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

- Thus, vertices visited immediately before and after
 C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_i$
- Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

- Thus, vertices visited immediately before and after
 C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_j$
- Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Correctness Proof

We just proved:

Lemma 23.2.

 ${m G}_{arphi}$ has a Hamiltonian cycle $\implies arphi$ has a satisfying assignment lpha.

Lemma 23.3.

arphi has a satisfying assignment iff $oldsymbol{G}_{arphi}$ has a Hamiltonian cycle

Proof

Follows from Lemma 23.1 and Lemma 23.2

Correctness Proof

We just proved:

Lemma 23.2.

 $extbf{\emph{G}}_{arphi}$ has a Hamiltonian cycle $\implies arphi$ has a satisfying assignment lpha.

Lemma 23.3.

arphi has a satisfying assignment iff $oldsymbol{G}_{arphi}$ has a Hamiltonian cycle.

Proof.

Follows from Lemma 23.1 and Lemma 23.2.

Summary

What we did:

- 1. Showed that **Directed Hamiltonian Cycle** is in **NP**.
- 2. Provided a polynomial time reduction from **3SAT** to **Directed Hamiltonian Cycle**.
- 3. Proved that φ satisfiable \iff $\textbf{\textit{G}}_{\varphi}$ is Hamiltonian.

Theorem 23.4.

The problem **Hamiltonian Cycle** in directed graphs is **NP-Complete**.

Summary

What we did:

- 1. Showed that **Directed Hamiltonian Cycle** is in **NP**.
- 2. Provided a polynomial time reduction from **3SAT** to **Directed Hamiltonian Cycle**.
- 3. Proved that φ satisfiable \iff $\textbf{\textit{G}}_{\varphi}$ is Hamiltonian.

Theorem 23.4.

The problem **Hamiltonian Cycle** in directed graphs is **NP-Complete**.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.4

Hamiltonian cycle in undirected graph

Hamiltonian Cycle

Problem 23.1.

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem 23.2.

Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- ▶ The problem is in **NP**; proof left as exercise.
- ► Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- ▶ Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}
- ightharpoonup A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- ▶ Replace each vertex \mathbf{v} by 3 vertices: \mathbf{v}_{in} , \mathbf{v} , and \mathbf{v}_{out}
- ightharpoonup A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- ▶ Replace each vertex \mathbf{v} by 3 vertices: \mathbf{v}_{in} , \mathbf{v} , and \mathbf{v}_{out}
- ▶ A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- \triangleright Replace each vertex \mathbf{v} by 3 vertices: \mathbf{v}_{in} , \mathbf{v} , and \mathbf{v}_{out}
- ▶ A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Reduction: Wrap-up

- ► The reduction is polynomial time (exercise)
- ► The reduction is correct (exercise)

THE END

..

(for now)