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Greedy algorithms by example
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Greedy algorithms
Why don’t you do right?

1 greedy algorithms: do locally the right thing...

2 ...and they suck.
Problem: VertexCoverMin

Instance: Vertex Cover!Minimization
Question: A graph G.

Return the smallest subset S ⊆ V (G), s.t. S touches all the edges of G.

3 GreedyVertexCover: pick ver-
tex with highest degree, remove,
repeat.
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Greedy algorithms
GreedyVertexCover in action...
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Greedy algorithms
GreedyVertexCover in action...

Observation 19.1.
GreedyVertexCover returns 4 vertices, but opt is 3 vertices.
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Back to GreedyVertexCover

1 GreedyVertexCover: pick ver-
tex with highest degree, remove,
repeat.

2 Returns 4, but opt is 3!

3 Can not be better than a 4/3-approximation algorithm.

4 Actually it is much worse!
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Greedy Vertex Cover

Theorem 19.2.
There is a graph over n vertices, such that the smallest Vertex Cover has k vertices,
but the greedy algorithm outputs a vertex cover of size Θ(k log n) approximation.

Proof: Outside the scope of this class...
...left as a hard exercise to the interested reader.

Vertex Cover is NP-Hard: Believe it requires exponential time to solve exactly.
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THE END
...

(for now)
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Greedy Algorithms: Tools and Techniques
FLNAME:19.2.0.0 ZZZ:19.2.0.0 Greedy Algorithms: Tools and Techniques
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What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1 make decision incrementally in small steps without backtracking

2 decision at each step is based on improving local or current state in a myopic
fashion without paying attention to the global situation

3 decisions often based on some fixed and simple priority rules
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Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself into believing they
work

2 Many greedy algorithms possible for a problem and no structured way to find
effective ones

CS 374: Every greedy algorithm needs a proof of correctness
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Greedy Algorithm Types

Crude classification:

1 Non-adaptive: fix some ordering of decisions a priori and stick with the order

2 Adaptive: make decisions adaptively but greedily/locally at each step

Plan:

1 See several examples

2 Pick up some proof techniques
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THE END
...

(for now)
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Scheduling Jobs to Minimize Average
Waiting Time
FLNAME:19.3.0.0 ZZZ:19.3.0.0 Scheduling Jobs to Minimize Average Waiting Time
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The Problem

n jobs J1, J2, . . . , Jn.

Each Ji has non-negative processing time pi

One server/machine/person available to process jobs.

Schedule/order jobs to min. total or average waiting time

Waiting time of Ji in schedule σ: sum of processing times of all jobs scheduled
before Ji

J1 J2 J3 J4 J5 J6

time 3 4 1 8 2 6

Example: schedule is J1, J2, J3, J4, J5, J6. Total waiting time is

0 + 3 + (3 + 4) + (3 + 4 + 1) + (3 + 4 + 1 + 8) + . . . =

Optimal schedule: Shortest Job First. J3, J5, J1, J2, J6, J4.
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Optimality of Shortest Job First (SJF)

Theorem 19.1.
Shortest Job First gives an optimum schedule for the problem of minimizing total
waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order of processing time
and hence p1 ≤ p2 ≤ . . . ≤ pn and SJF order is J1, J2, . . . , Jn.
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Optimality of SJF: Proof by picture
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Inversions

Definition 19.2.
A schedule Ji1, Ji2, . . . , Jin has an inversion if there are jobs Ja and Jb such that S
schedules Ja before Jb, but pa > pb.

Claim 19.3.
If a schedule has an inversion then there is an inversion between two adjacent scheduled
jobs.

Proof: exercise.
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Proof of optimality of SJF
SJF = Shortest Job First

Recall SJF order is J1, J2, . . . , Jn.

Let Ji1, Ji2, . . . , Jin be an optimum schedule with fewest inversions.

If schedule has no inversions then it is identical to SJF schedule and we are done.

Otherwise there is an 1 ≤ ` < n such that i` > i`+1 since schedule has inversion
among two adjacent scheduled jobs

Claim 19.4.
The schedule obtained from Ji1, Ji2, . . . , Jin by exchanging/swapping positions of jobs
Ji` and Ji`+1

is also optimal and has one fewer inversion.

Assuming claim we obtain a contradiction and hence optimum schedule with fewest
inversions must be the SJF schedule.

18 / 63



Proof of optimality of SJF
SJF = Shortest Job First

Recall SJF order is J1, J2, . . . , Jn.

Let Ji1, Ji2, . . . , Jin be an optimum schedule with fewest inversions.

If schedule has no inversions then it is identical to SJF schedule and we are done.

Otherwise there is an 1 ≤ ` < n such that i` > i`+1 since schedule has inversion
among two adjacent scheduled jobs

Claim 19.4.
The schedule obtained from Ji1, Ji2, . . . , Jin by exchanging/swapping positions of jobs
Ji` and Ji`+1

is also optimal and has one fewer inversion.

Assuming claim we obtain a contradiction and hence optimum schedule with fewest
inversions must be the SJF schedule.

18 / 63



Exercise: A Weighted Version

n jobs J1, J2, . . . , Jn. Ji has non-negative processing time pi and a non-negative
weight wi

One server/machine/person available to process jobs.

Schedule/order the jobs to minimize total or average waiting time

Waiting time of Ji in schedule σ: sum of processing times of all jobs scheduled
before Ji

Goal: minimize total weighted waiting time.

Formally, compute a permutation π that minimizes
∑n

i=1

(∑i−1
j=1 pπ(j )

)
wπ(i ).

J1 J2 J3 J4 J5 J6

time 3 4 1 8 2 6
weight 10 5 2 100 1 1
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THE END
...

(for now)
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Exercise: Scheduling Jobs to Minimize
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Exercise: A Weighted Version

Consider two jobs p1, p2 of weight w1 and w2. We have two possibilities:
Job 1 first Job 2 first
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need to compare p1w2
?
= p2w1

dividing by p1p2...

equivalent to comparing w2/p2
?
= w1/p1

ωi = wi/pi : Price per processing unit in dollars
Sort jobs in decreasing value of ωi . Schedule jobs by this value.

Correctness proof: Same as the unweighted case – if there is an inversion, then by
the argument above, flip these jobs, and get a better schedule.
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THE END
...

(for now)
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Scheduling to Minimize Lateness

1 Given jobs J1, J2, . . . , Jn with deadlines and processing times to be scheduled on a
single resource.

2 If a job i starts at time si then it will finish at time fi = si + ti , where ti is its
processing time. di : deadline.

3 The lateness of a job is `i = max(0, fi − di ).

4 Schedule all jobs such that L = max `i is minimized.

J1 J2 J3 J4 J5 J6

ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J3 J2 J6 J1 J5 J4

`1 = 2 `5 = 0 `4 = 6
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Greedy Template

Initially R is the set of all requests

curr time = 0
max lateness = 0
while R is not empty do

choose i ∈ R
curr time = curr time + ti
if (curr time > di) then

max lateness = max(curr time − di ,max lateness)

return max lateness

Main task: Decide the order in which to process jobs in R

27 / 63
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Three Algorithms

1 Shortest job first — sort according to ti .
2 Shortest slack first — sort according to di − ti .
3 EDF = Earliest deadline first — sort according to di .

Counter examples for first two: exercise
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Earliest Deadline First

Theorem 19.1.
Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma 19.2.
If there is a feasible schedule then there is one with no idle time before all jobs are
finished.
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Inversions
EDF = Earliest Deadline First

Assume jobs are sorted such that d1 ≤ d2 ≤ . . . ≤ dn. Hence EDF schedules them in
this order.

Definition 19.3.
A schedule S is said to have an inversion if there are jobs i and j such that S schedules
i before j , but di > dj .

Claim 19.4.
If a schedule S has an inversion then there is an inversion between two adjacent
scheduled jobs.

Proof: exercise.
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Proof sketch of Optimality of EDF

Let S be an optimum schedule with smallest number of inversions.

If S has no inversions then this is same as EDF and we are done.

Else S has two adjacent jobs i and j with di > dj .

Swap positions of i and j to obtain a new schedule S ′

Claim 19.5.
Maximum lateness of S ′ is no more than that of S . And S ′ has strictly fewer inversions
than S .
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THE END
...

(for now)
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Picking k elements to maximize total weight

1 Given n items each with non-negative weights/profits and integer 1 ≤ k ≤ n.

2 Goal: pick k elements to maximize total weight of items picked.

e1 e2 e3 e4 e5 e6

weight 3 2 1 4 3 2

k = 2:
k = 3:
k = 4:
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Greedy Template

N is the set of all elements X ← ∅
(* X will store all the elements that will be picked *)

while |X | < k and N is not empty do
choose ej ∈ N of maximum weight

add ej to X
remove ej from N

return the set X

Remark: One can rephrase algorithm simply as sorting elements in decreasing weight
order and picking the top k elements but the above template generalizes to other
settings a bit more easily.

Theorem 19.1.
Greedy is optimal for picking k elements of maximum weight.
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A more interesting problem

1 Given n items N = {e1, e2, . . . , en}. Each item ei has a non-negative weight wi .

2 Items partitioned into h sets N1,N2, . . . ,Nh. Think of each item having one of h
colors.

3 Given integers k1, k2, . . . , kh and another integer k
4 Goal: pick k elements such that no more than ki from Ni to maximize total weight

of items picked.

e1 e2 e3 e4 e5 e6 e7

weight 9 5 4 7 5 2 1

N1 = {e1, e2, e3}, N2 = {e4, e5}, N3 = {e6, e7}
k = 4, k1 = 2, k2 = 1, k3 = 2
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Greedy Template

N is the set of all elements X ← ∅
(* X will store all the elements that will be picked *)

while N is not empty do
N ′ = {ei ∈ N | X ∪ {ei} is feasible}
if N ′ = ∅ then break
choose ej ∈ N ′ of maximum weight

add ej to X
remove ej from N

return the set X

Theorem 19.2.
Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum weight
independent set in a matroid. Beyond scope of course.
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choose ej ∈ N ′ of maximum weight

add ej to X
remove ej from N

return the set X

Theorem 19.2.
Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum weight
independent set in a matroid. Beyond scope of course.
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THE END
...

(for now)
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Interval Scheduling

Problem 19.1 (Interval Scheduling).

Input: A set of jobs with start and finish times to be scheduled on a resource (example:
classes and class rooms).

Goal: Schedule as many jobs as possible
1 Two jobs with overlapping intervals cannot both be scheduled!
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Greedy Template

R is the set of all requests

X ← ∅ (* X will store all the jobs that will be scheduled *)

while R is not empty do
choose i ∈ R
add i to X
remove from R all requests that overlap with i

return the set X

Main task: Decide the order in which to process requests in R
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Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.
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Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest
processing.
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Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.
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THE END
...

(for now)
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Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish
earliest.
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Optimal Greedy Algorithm

R is the set of all requests

X ← ∅ (* X stores the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is smallest

add i to X
remove from R all requests that overlap with i

return X

Theorem 19.2.
The greedy algorithm that picks jobs in the order of their finishing times is optimal.
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Implementation and Running Time

Initially R is the set of all requests

X ← ∅ (* X stores the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

if i does not overlap with requests in X
add i to X

remove i from R
return the set X

Presort all requests based on finishing time. O(n log n) time

Now choosing least finishing time is O(1)

Keep track of the finishing time of the last request added to A. Then check if
starting time of i later than that

Thus, checking non-overlapping is O(1)

Total time O(n log n + n) = O(n log n)
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Comments

1 Interesting Exercise: smallest interval first picks at least half the optimum number
of intervals.

2 All requests need not be known at the beginning. Such online algorithms are a
subject of research
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Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time si , a finish time fi , and a
weight wi . We would like to find a set S of compatible jobs whose total weight is
maximized. Which of the following greedy algorithms finds the optimum schedule?

(A) Earliest start time first.
(B) Earliest finish time fist.
(C) Highest weight first.
(D) None of the above.
(E) IDK.

Weighted problem can be solved via dynamic programming. See notes.
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THE END
...

(for now)
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Earliest finish time: A quick recall

Time
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Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does not have any
conflicts

2 For a set of requests R, let O be an optimal set and let X be the set returned by
the greedy algorithm. Then O = X? Not likely!

Instead we will show that |O| = |X |
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Helper Claim

Claim 19.3.
i be first interval picked by Greedy into solution.
O: Optimal solution.
If i 6∈ O, there is exactly one interval j1 ∈ O that conflicts with i .

Proof.
1 No j ∈ O conflicts i =⇒ O is not opt!

2 Suppose j1, j2 ∈ O such that j1 6= j2 and
both j1 and j2 conflict with i .

3 Since i has earliest finish time, j1 and i
overlap at f (i).

4 For same reason j2 also overlaps with i at
f (i).

5 Implies that j1, j2 overlap at f (i) but
intervals in O cannot overlap.

i j1

j2
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Proof of Optimality: Key Lemma

Lemma 19.4.
i1 be first interval picked by Greedy. There exists an optimum solution that contains i1.

Proof.
Let O be an arbitrary optimum solution. If i1 ∈ O we are done.
By Claim 19.3 ...

1 Exists exactly one j1 ∈ O conflicting with i1.

2 Form a new set O′ by removing j1 from O and adding i1, that is
O′ = (O − {j1}) ∪ {i1}.

3 From claim, O′ is a feasible solution (no conflicts).

4 Since |O′| = |O|, O′ is also an optimum solution and it contains i1.
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Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: n = 1. Trivial since Greedy picks one interval.
Induction Step: Assume theorem holds for i < n.
Let K be an input (i.e., instance) with n intervals
i1 ⇐ First interval picked by greedy algorithm.
K ′ ⇐ The result of removing i1 and all conflicting intervals from K .
|K ′| = |K | − 1.
G (K ),G (K ′): Solution produced by Greedy on K and K ′, respectively.
Lemma 19.4 =⇒ optimum solution O to K with i1 ∈ O.
Let O′ = O − {i1}. O′ is a solution to K ′.

|G (K )| = 1 + |G (K ′)| from Greedy description

≥ 1 + |O′| By induction, G (I ′) is optimum for I ′)
= |O|
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...

(for now)
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Greedy proof techniques: Overview

1 Greedy’s first step leads to an optimum solution. Show that optimal solution can
be modified to agree with greedy after first step. Then use induction. Example,
Interval Scheduling.

2 Greedy algorithm stays ahead. Show that after each step the solution of the greedy
algorithm is at least as good as the solution of any other algorithm. Example,
Interval scheduling.

3 Structural property of solution. Observe some structural bound of every solution to
the problem, and show that greedy algorithm achieves this bound. Example,
Interval Partitioning (see Kleinberg-Tardos book).

4 Exchange argument. Gradually transform any optimal solution to the one produced
by the greedy algorithm, without hurting its optimality.
Example: Minimizing lateness, and Interval scheduling
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Takeaway Points

1 Greedy algorithms come naturally but often are incorrect.
A proof of correctness is an absolute necessity.

2 Exchange arguments are often the key proof ingredient. Focus on why the first step
of the algorithm is correct: need to show that there is an optimum/correct solution
with the first step of the algorithm.

3 Thinking about correctness is also a good way to figure out which of the many
greedy strategies is likely to work.
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