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18.1
Shortest Paths with Negative Length Edges
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18.1.1

Why Dijkstra’s algorithm fails with negative
edges
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Single-Source Shortest Paths with Negative Edge Lengths

Problem statement

Single-Source Shortest Path
Problems
Input: A directed graph G = (V, E)
with arbitrary (including negative) edge
lengths. For edge e = (u, v),
£(e) = £(u, v) is its length.

@ Given nodes s, t find shortest path

from s to t.

@ Given node s find shortest path
from s to all other nodes.
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What are the distances computed by Dijkstra’s algorithm?

© 6 6 e

The distance as computed by Dijk-
stra algorithm starting from s:

s=0,x=5y=12z=0.
s=0,x=1y=2z=5.
s=0,x=5y=12z=2
IDK.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

1@ Shortest Hath

False assumption: Dijkstra's algorithm is based on the assumption that if
S=1Vyg— Vi — V... —> Vg is a shortest path from s to v, then

dist(s, v;) < dist(s, v;;1) for 0 < i < k. Holds true only for non-negative edge
lengths.
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Shortest Paths with Negative Lengths

Lemma 18.1.

Let G be a directed graph with arbitrary edge lengths. If
S=Vy — V; — Vo — ... —> Vg is a shortest path from s to vy then for 1 < i < k:

Q@ s=vy— vi = v, = ... — V;is a shortest path from s to v;
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Shortest Paths with Negative Lengths

Lemma 18.1.

Let G be a directed graph with arbitrary edge lengths. If
S=Vy — V; — Vo — ... —> Vg is a shortest path from s to vy then for 1 < i < k:

Q@ s=vy— vi = v, = ... — V;is a shortest path from s to v;

@ false: dist(s, v;) < dist(s, vx) for 1 < i < k. Holds true only for non-negative
edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
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THE END

(for now)
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18.1.2

But wait! Things get worse: Negative cycles
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Negative Length Cycles

Definition 18.2.
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative. J
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Negative Length Cycles

Definition 18.2.
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative. J

What is the shortest path distance between s and t?
Reminder: Paths have to be simple...
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose
@ G has a negative length cycle C, and
© s can reach C and C can reach t.
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose
@ G has a negative length cycle C, and
© s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
Possible answers: Define shortest distance to be:

@ undefined, that is —oo, OR
@ the length of a shortest simple path from s to t.
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Really bad new about negative edges, and shortest path...

Lemma 18.3.

If there is an efficient algorithm to find a shortest simple s — t path in a graph with
negative edge lengths, then there is an efficient algorithm to find the longest simple
s — t path in a graph with positive edge lengths.

Finding the s — t longest path is difficult. NP-Hard!
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THE END

(for now)
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18.1.3
Restating problem of Shortest path with

negative edges



Alternatively: Finding Shortest Walks

Given a graph G = (V, E):
@ A path is a sequence of distinct vertices vy, vy, ..., vk such that (v;, vi11) € E
for1 <i<k-—1.
@ A walk is a sequence of vertices vy, va, ..., v such that (v, v;y1) € E for
1 < i< k — 1. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.
© |If there is a walk from u to v that contains negative length cycle then
dist(u,v) = —oo
@ Else there is a path with at most n — 1 edges whose length is equal to the length
of a shortest walk and dist(u, v) is finite

Helpful to think about walks

15/95



Shortest Paths with Negative Edge Lengths

Algorithmic Problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For edge
e = (u,v), £(e) = £(u,v) is its length.

Questions:

@ Given nodes s, t, either find a negative length cycle C that s can reach or find a
shortest path from s to t.

@ Given node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes.

© Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths

In Undirected Graphs

Note: With negative lengths, shortest path problems and negative cycle detection in

undirected graphs cannot be reduced to directed graphs by bi-directing each undirected
edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and
significantly more involved than those for directed graphs. One need to compute
T-joins in the relevant graph. Pretty painful stuff.
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THE END

(for now)
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18.1.4

Applications of shortest path for negative
weights on edges



Why negative lengths?
Several Applications

@ Shortest path problems useful in modeling many situations — in some negative
lengths are natural

© Negative length cycle can be used to find arbitrage opportunities in currency
trading

© Important sub-routine in algorithms for more general problem: minimum-cost flow
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Negative cycles
Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the exchange rate for converting
one unit of a into one unit of b.
Questions:

Q Is there an arbitrage opportunity?

@ Given currencies s, t what is the best way to convert s to t (perhaps via other
intermediate currencies)?

Concrete gxample:
o 1 Ch|nese Yuan — 0.1116 EUI’O ThUS, |f exchanging 1 $ — Yuan

© 1 Euro = 1.3617 US dollar — Euro — $, we get: 0.1116 =
© 1 US Dollar = 7.1 Chinese Yuan. 1.3617 x 7.1 = 1.078969.
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Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies ki, ko, - . . 5 kpy
then one unit of i yields exch(i, k1) X exch(ki, k2) ... X exch(kp,j) units of j.
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Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies ki, ko, - . . 5 kpy
then one unit of i yields exch(i, k1) X exch(ki, k2) ... X exch(kp,j) units of j.

Create currency trading directed graph G = (V, E):
© For each currency i there is a node v; € V
@ E =V X V: an edge for each pair of currencies
@ edge length £(v;, v;) = — log(exch(i, j)) can be negative

Exercise: Verify that

© There is an arbitrage opportunity if and only if G has a negative length cycle.

@ The best way to convert currency i to currency j is via a shortest path in G from i

to j. If d is the distance from i to j then one unit of i can be converted into 2¢
units of j.
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Reducing Currency Trading to Shortest Paths

Math recall - relevant information

Q log(ag * ap * + -+ x ax) = logag + logay + « - - + log .
Q logx >0ifandonlyif x> 1.
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THE END

(for now)
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18.2
Bellman Ford Algorithm
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18.2.1

Shortest path with negative lengths: The
challenge
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Shortest Paths with Negative Lengths

Lemma 18.1.

Let G be a directed graph with arbitrary edge lengths. If
S=Vy — V; — Vo — ... —> Vg is a shortest path from s to vy then for 1 < i < k:

Q@ s=vy— vi = v, = ... — V;is a shortest path from s to v;
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Shortest Paths with Negative Lengths

Lemma 18.1.

Let G be a directed graph with arbitrary edge lengths. If
S=Vy — V; — Vo — ... —> Vg is a shortest path from s to vy then for 1 < i < k:

Q@ s=vy— vi = v, = ... — V;is a shortest path from s to v;
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edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
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THE END

(for now)
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18.2.2
Shortest path via number of hops
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Shortest Paths and Recursion

©@ Compute the shortest path distance from s to t recursively?
© What are the smaller sub-problems?
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Lemma 18.2.

Let G be a directed graph with arbitrary edge lengths. If
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Shortest Paths and Recursion

©@ Compute the shortest path distance from s to t recursively?
© What are the smaller sub-problems?

Lemma 18.2.

Let G be a directed graph with arbitrary edge lengths. If
S=Vy — V; — Vo) — ... —> Vg is a shortest path from s to vy then for 1 < i < k:

Q@ s=vy— vy = v, > ... — V;is a shortest path from s to v;

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.
Note: dist(s,v) = d(v,n — 1). Recursion for d(v, k):

d(v, k) = min {minuev(d(u, k —1)+ £(u,v)).

dlv,k —1)

Base case: d(s,0) = 0 and d(v,0) = oo for all v # s.
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THE END

(for now)
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18.2.3
The Bellman-Ford Algorithm
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Bellman-Ford Algorithm

for each u € V do
d(u,0) < oo
d(s,0) «~ 0

for k=1 to n—1 do
for each v € V do
d(vyk) < d(v,k —1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v, k),d(u, k — 1) + £(u, v)}

for each v € V do
dist(s, v) < d(v,n — 1)
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Bellman-Ford Algorithm

Running time:

for each u € V do
d(u,0) < oo
d(s,0) «~ 0

for k=1 to n—1 do
for each v € V do
d(vyk) < d(v,k —1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v, k),d(u, k — 1) + £(u, v)}

for each v € V do

dist(s, v) < d(v,n — 1)
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Bellman-Ford Algorithm

for each u € V do
d(u,0) < oo
d(s,0) «~ 0

for k=1 to n—1 do
for each v € V do
d(vyk) < d(v,k —1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v, k),d(u, k — 1) + £(u, v)}

for each v € V do
dist(s, v) < d(v,n — 1)

Running time: O(mn) Space: O(m + n?)
Space can be reduced to O(m + n).
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Bellman-Ford Algorithm: Cleaner version

for each u € V do
d(u) + oo
d(s) <0

for k=1 to n—1 do
for each v € V do
for each edge (u,v) € in(v) do
d(v) = min{d(v), d(u) + £(u, v)}

for each v € V do
dist(s, v) < d(v)

Running time: O(mn) Space: O(m + n)
Exercise: Argue that this achieves same results as algorithm on previous slide.
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THE END

(for now)
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18.2.3.1

Correctness of the Bellman-Ford Algorithm
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Bellman-Ford Algorithm: Modified for analysis

for each u € V do
d(u,0) < oo
d(s,0) «~ 0

for k=1 to n do
for each v € V do
d(v,k) < d(v,k — 1)
for each edge (u,v) € in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u, v)}

for each v € V do
dist(s, v) < d(v,n — 1)
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Walks computed correctly

Lemma 18.3.

For each v, d(v, k) is the length of a shortest walk from s to v with at most k hops.

v

Proof.

Standard induction (left as exercise). O
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Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If G does not has a negative length cycle reachable from s — Vv:
d(v,n)=d(v,n—1).

Also, d(v, n — 1) is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex|
(otherwise 3 neg cycle).

v
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Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If G does not has a negative length cycle reachable from s — Vv:
d(v,n)=d(v,n—1).

Also, d(v, n — 1) is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex|
(otherwise 3 neg cycle).

A path has at most n — 1 edges.

—> Len shortest walk from s to v with at most n — 1 edges

= Len shortest walk from s to v

= Len shortest path from s to v.

By Lemma 18.3 : d(v, n) = d(v,n — 1) = dist(s, v), for all v.
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THE END

(for now)
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18.2.4

Bellman-Ford: Detecting negative cycles
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Correctness: detecting negative length cycle

Lemma 18.5.

Suppose G has a negative cycle C reachable from s. Then there is some node v € C
such that d(v,n) < d(v,n —1).
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Correctness: detecting negative length cycle

Lemma 18.5.

Suppose G has a negative cycle C reachable from s. Then there is some node v € C
such that d(v,n) < d(v,n —1).

Proof.

Suppose not. Let C = vy — v, — ... — v, — v; be negative length cycle reachable
from s. d(v;, n — 1) is finite for 1 < i < h since C is reachable from s. By
assumption d(v, n) > d(v,n — 1) for all v € C; implies no change in nth iteration;
d(vi,n —1) = d(v;,n) for 1 < i < h. This means

dlvin—1) < d(viii,n — 1)+ £(vi_q,v;) for 2 < i < h and

d(vi,n—1) < d(vn,n — 1)+ €(vp, vi). Adding up all these inequalities results in the
inequality 0 < £(C) which contradicts the assumption that £(C) < 0. O
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Proof of Lemma 18.5 in more detail...

o
S

U1

Vo
-~ v3

Us

U2

Vg

d(v1, n)

Vi, n (Vo,n— 1)+£(V0,V1)
d(va, n)

<d
< d(vi,n—1)+ £(vi, v2)
d(V,', n) S d(V,'_l, n — 1) -+ e(V,'_l, V,')

d(Vka )

n d(vk_l,n— 1)+£(vk_1,vk)
d(Vo, n) d

<
< d(vg,n — 1)+ £(v, vp)
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Proof of Lemma 18.5 in more detail...

o
S

U1

Vo
-~ v3

Us

U2

Vg

d(vi, n) < d(vk—1, n) + £(vk_1, v)
d(vp, n) < d(vk, n) + £(vk, vp)
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Proof of Lemma 18.5 in more detail...

o, .
d(vi, n) < d(vk—1, n) + £(vk_1, v)
d(vp, n) < d(vk, n) + £(vk, vp)
K k K
Z d(Vn n) S Z d(V,', n) + ZE(Vi—la Vi) + e(vka VO)
i=0 i=0 i=1
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Proof of Lemma 18.5 in more detail...

U1

V2
Vo
Us Vg
k k k
Z d(vi,n) < Z d(vi, n) + ZE(V,-_I, Vi) + £€(vk, vo)
i=0 i=0 i=1

k
0 S ZE(Vi—la Vi) + E(Vk7 VO)’

i=1
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Proof of Lemma 18.5 in more detail...

U1

V2
Vo
Us Vg
k k k
Z d(vi,n) < Z d(vi, n) + ZE(V,-_I, Vi) + £€(vk, vo)
i=0 i=0 i=1

k
0< ZE(V;_I, v;) + €(vk, vp) = len(C).
i=1
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Proof of Lemma 18.5 in more detail...

(% Uy

Vg
S v
Uk V4
k k k
> d(viyn) < d(viyn) + > L(vie1, vi) + £k, vo)
i=0 i=0 i=1

k
0< ZE(V;_I, v;) + €(vk, vp) = len(C).
i=1
C is a not a negative cycle. Contradiction. ]
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Negative cycles can not hide

Lemma 18.4 restated

If G does not has a negative length cycle reachable from s =— Vv:
d(v,n) =d(v,n—1).

Also, d(v, n — 1) is the length of the shortest path between s and v.

Lemma 18.4 and Lemma 18.5 put together are the following:
Lemma 18.6.

G has a negative length cycle reachable from s <= there is some node v such that
d(v,n) < d(v,n —1).
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Bellman-Ford: Negative Cycle Detection

The official final version

for each u€ V do
d(u) + oo
d(s)« 0

for k=1 to n—1 do
for each v € V do
for each edge (u,v) € in(v) do
d(v) = min{d(v), d(u) + £(u, v)}
(* One more iteration to check if distances change *)
for each v € V do
for each edge (u,v) € in(v) do
if (d(v) > d(u) + €(u,v))
Output ~“Negative Cycle''

for each v € V do
dist(s, v) < d(v)
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THE END

(for now)
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18.2.5

Variants on Bellman-Ford
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

@ For each v the d(v) can only get smaller as algorithm proceeds.

o If d(v) becomes smaller it is because we found a vertex u such that
d(v) > d(u) + €(u, v) and we update d(v) = d(u) + €(u, v). That is, we found
a shorter path to v through w.

@ For each v have a prev(v) pointer and update it to point to u if v finds a shorter
path via w.

@ At end of algorithm prev(v) pointers give a shortest path tree oriented towards
the source s.
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Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?J
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Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a negative length cycIe?J

© Bellman-Ford checks whether there is a negative cycle C that is reachable from a
specific vertex s. There may negative cycles not reachable from s.

@ Run Bellman-Ford | V| times, once from each node u?
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Negative Cycle Detection

© Add a new node s’ and connect it to all nodes of G with zero length edges.
Bellman-Ford from s’ will fill find a negative length cycle if there is one. Exercise:
why does this work?

© Negative cycle detection can be done with one Bellman-Ford invocation.
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THE END

(for now)
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18.3
Shortest Paths in DAGs
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Shortest Paths in a DAG

Single-Source Shortest Path Problems
Input A directed acyclic graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge e = (u, v), £(e) = £(u, v) is its length.
© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge e = (u, v), £(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

@ No cycles and hence no negative length cycles! Hence can find shortest paths even
for negative length edges

@ Can order nodes using topological sort
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Algorithm for DAGs

@ Want to find shortest paths from s. Ignore nodes not reachable from s.

Q Lets = v, vp,Vj11,...,V, be a topological sort of G
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Algorithm for DAGs

@ Want to find shortest paths from s. Ignore nodes not reachable from s.

Q Lets = v, vp,Vj11,...,V, be a topological sort of G

Observation:
@ shortest path from s to v; cannot use any node from v 1,...,V,
@ can find shortest paths in topological sort order.
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Algorithm for DAGs

for i=1 to n do
d(s,v;) = oo
d(s,s) =0

for i=1ton—1do
for each edge (v;, v;) in Adj(v;) do
d(s’ Vi) = min{d(sa VJ)’ d(57 Vi) + é(v,-, VJ)}

return d(s,-) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative edge lengths and hence
can find longest paths in a DAG.
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Bellman-Ford and DAGs

Bellman-Ford is based on the following principles:
@ The shortest walk length from s to v with at most k hops can be computed via
dynamic programming
@ G has a negative length cycle reachable from s iff there is a node v such that
shortest walk length reduces after n hops.
We can find hop-constrained shortest paths via graph reduction.
Given G = (V, E) with edge lengths £(e) and integer k construction new layered graph
G’ = (V', E’) as follows.
o V=V x{0,1,2,...,k}.
o E' = {((u,i),(v,i+1) [ (u,v) € E,0 < i <k},
E((u, i)a (Va i+ 1)) = E(u, V)

Lemma 18.1.

Shortest path distance from (u,0) to (v, k) in G’ is equal to the shortest walk from u
to v in G with exactly k edges.
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Layered DAG: Figure
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THE END

(for now)
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18.4
All Pairs Shortest Paths
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18.4.1
Problem definition and what we can already
do
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Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs).
For edge e = (u, v), £(e) = £(u, v) is its length.
© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.

© Find shortest paths for all pairs of nodes.
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SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), £(e) = £(u,v) is its length.
@ Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.
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SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), £(e) = £(u,v) is its length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: O((m + n) log n)
with heaps and O(m + nlog n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).
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All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), £(e) = £(u,v) is its length.

@ Find shortest paths for all pairs of nodes.
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All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), £(e) = £(u,v) is its length.

© Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
@ Non-negative lengths. O(nm log n) with heaps and O(nm + n? log n) using
advanced priority queues.
@ Arbitrary edge lengths: O(n*>m).
O(n*) if m = Q(n?).
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All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), £(e) = £(u,v) is its length.

© Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
@ Non-negative lengths. O(nm log n) with heaps and O(nm + n? log n) using
advanced priority queues.
@ Arbitrary edge lengths: O(n*>m).
O(n*) if m = Q(n?).
Can we do better?
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THE END

(for now)
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18.4.2
All Pairs Shortest Paths: A recursive
solution
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,

@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oo if there is a

negative length cycle).

dist(i, j,
dist(i, j,
dist(i, j,
dist(i, j,

0)
1)
2)
3)
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,
@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the

largest index of an intermediate node is at most k (could be —oo if there is a
negative length cycle).

dist(i, j, = 100
dist(i, j,
dist(i, j,

(

0)
1)
2)
dist (i, j, 3)
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,
@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the

largest index of an intermediate node is at most k (could be —oo if there is a
negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) =
dist(i, j,3) =
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,
@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the

largest index of an intermediate node is at most k (could be —oo if there is a
negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i, j,3) =
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,

@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oo if there is a
negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) = 5
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For the following graph, dist(i, j, 2) is...

@3@

10
11
12
15
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All-Pairs: Recursion on index of intermediate nodes

dist(i, j, k — 1)

dist(i,j, k — 1
dist(i, j, k) — min 4 St ik =1)
dist(i, k, k — 1) + dist(k, j, k — 1)
Base case: dist(i, j,0) = £(i,j) if (i,j) € E, otherwise co
Correctness: If i — j shortest walk goes through k then k occurs only once on the

path — otherwise there is a negative length cycle.
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All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k — 1) < 0 then G has a negative
length cycle containing k and dist(i, j, k) = —oo.

Recursion below is valid only if dist(k, k, k — 1) > 0. We can detect this during the
algorithm or wait till the end.
dist(i, j, k — 1)

dist(i,j, k) = min¢ = > . .
dist(i, k, k — 1) + dist(k,j, k — 1)
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THE END

(for now)
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18.4.3
Floyd-Warshall algorithm
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

d(ini,k - 1)

d.a.ak =mi
(7> J; k) mm{d(i,k,k—1)+d(k,j,k—1)

for i=1 to n do
for j=1 to n do
d(i,j,O) = Z(i’j)
(x £(i,j) =00 if (i,j) € E, 0 if i=j %)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(i,j, k) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output J negative cycle in G

d(i,j, k — 1),
d(i,k,k — 1)+ d(k,j, k — 1)
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

d(ini,k - 1)

d.a.ak =mi
(7> J; k) mm{d(i,k,k—1)+d(k,j,k—1)

for i=1 to n do
for j=1 to n do
d(i,j,O) :Z(i’j)
(x £(i,j) =00 if (i,j) € E, 0 if i=j %) Running Time:
for k=1 to n do
for i=1 to n do
for j=1 to n do

d(i,j, k) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output J negative cycle in G

d(i,j, k — 1),
d(i,k,k — 1)+ d(k,j, k — 1)
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

d(ini,k - 1)

d.a.ak =mi
(7> J; k) mm{d(i,k,k—1)+d(k,j,k—1)

for i=1 to n do
for j=1 to n do
d(i,j,O) :Z(i’j)
(e £0,j) = 00 it (i) ¢ E, 0 1f i=j Running Time: @(n3).
for k=1 to n do Space: ©(n?).
for i=1 to n do
for j=1 to n do

d(i,j, k) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output J negative cycle in G

d(i,j, k — 1),
d(i,k,k — 1)+ d(k,j, k — 1)
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d(ini,k - 1)

Floyd-Warshall Algorithm d(i,j, k) = mi”{ ( 1) + d( 1)
d(i, k,k — 1) + d(k,j, k —

for All-Pairs Shortest Paths

for i=1 to n do
for j=1 to n do
d(i,j,0) = £(i, j)
(e £0,j) = 00 it (i) ¢ E, 0 1f i=j Running Time: @(n3).
for k=1 to n do Space: @(n3).
for i=1 to n do

for j=1 to n do Correctness:
d(i, j, k) = min d(l.,j, k—1), . v.|a mdu.c.tlf)n and recur-
d(i,k,k — 1) + d(k,j, k — 1) sive definition

for i=1 to n do
if (dist(i,i,n) < 0) then
Output J negative cycle in G
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

© Create a n X n array Next that stores the next vertex on shortest path for each
pair of vertices

© With array Next, for any pair of given vertices i, j can compute a shortest path in
O(n) time.
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Floyd-Warshall Algorithm

Finding the Paths

for i=1 to n do
for j=1 to n do
d(i,j,0) = £(i, )
(* L(i,j) = oo if (i,j) not edge, 0 if i=j *)
Next(i,j) = —1
for k=1 to n do
for i=1 to n do
for j=1 to n do
if (d(i,j,k—1)> d(i,k,k — 1)+ d(k,j,k —1)) then
d(i,j, k) = d(i,k;k — 1) + d(k,j, k — 1)
Next(i,j) = k
for i=1 to n do
if (d(i,i,n) < 0) then
Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i, j describe an O(n) algorithm to
find a i-j shortest path.
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THE END

(for now)
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18.5

Summary of shortest path algorithms
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Summary of results on shortest paths

Single source

No negative edges

Dijkstra

O(nlogn + m)

Edge lengths can be negative | Bellman Ford

O(nm)

All Pairs Shortest Paths

No negative edges

n * Dijkstra

No negative cycles

n * Bellman Ford

No negative cycles (*)

BF + n * Dijkstra

No negative cycles

Floyd-Warshall

Unweighted

Matrix multiplication
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Summary of results on shortest paths

More details

(*): The algorithm for the case that there are no negative cycles, and doing all shortest
paths, works by computing a potential function using Bellman-Ford and then doing
Dijkstra. It is mentioned for the sake of completeness, but it outside the scope of the
class.
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THE END

(for now)
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18.6
DFA to Regular Expression
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Back to Regular Languages

We saw the following two theorems previously.

Theorem 18.1.

For every NFA N over a finite alphabet * there is DFA M such that L(M) = L(N).
Theorem 18.2.

For every regular expression r over finite alphabet ¥ there is a NFA N such that
L(N) = L(r).

’
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Back to Regular Languages

We saw the following two theorems previously.

Theorem 18.1.
For every NFA N over a finite alphabet * there is DFA M such that L(M) = L(N).

’

Theorem 18.2.

For every regular expression r over finite alphabet ¥ there is a NFA N such that
L(N) = L(r).

v

We claimed the following theorem which would prove equivalence of NFAs, DFAs and
regular expressions.

Theorem 18.3.

For every DFA M over a finite alphabet ¥ there is a regular expression r such that
L(M) = L(r).
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DFA to Regular Expression

Given DFA M = (Q, %, 9, g1, F) want to construct an equivalent regular expression r.

Idea:
@ Number states of DFA: Q = {q1,...,qn} where |Q| = n.
@ Define L;j = {w | 6(q;, w) = q;}. Note L; is regular. Why?
o L(M) = Ugerly,.
@ Obtain regular expression r;j for L; ;.

© Then r =} g n, is regular expression for L(M) — here the summation is the
or operator.

Note: Using gy for start state is intentional to help in the notation for the recursion.
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A recursive expression for L;;

Define LkJ be set of strings w in L;; such that the highest index state visited by M on
walk from g; to g; (not counting end points i and j) on input w is at most k.

Claim: L, ={aex|da,a)=aq}
L?J = L?,i{a €X|d(gia)= qj}L?,j ifi#j
Ly = Lyt o (L Lt 1Y) i#i

P k—1 k=1 k=1 ,k—1\%
L;; = (Li,i U Li,k : Lk,k ) Lk,i )
Lij= L;',j.
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A recursive expression for L;;

Claim: L?’,. ={aecX|d(qg,a)=q}"
Ly, = L) {a € X |5(q,a) = q}L), if i 7
- —1 k=1 k-1 .
L:‘(,j:l'l'('luo-fk 'L:k'Lk'> i#]j

L{(,':<Ll'( ! Lfkl L:kl L:,1>

Proof: by picture
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A recursive expression for L;;

Claim:

The desired language is

L), ={acx|d(a,a)=q}"

L?,j = L?,i{a €X|d(qga)= qf}"?,j

K k—1 k—1 pk—1 gk—1

Lij="Lij o (Li,k Lk - L )
P k—1 k=1 k=1 ,k=1\%

L;; = (Li,i U Li,k : Lk,k ) Lk,i )

__qn
Lij=Lr.

L(M) = Ugerly,i = Uq,-eFL'f,i

if i #j
i 7]
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A regular expression for L(M)

0 _ E
’},i = a

acx:d(q;,a)=q;

0 _ 0 0 s

ri= ri’,.< E a) rij ifi #j
a€x:4(qi,a)=q;

k k—1 | k—1 _k—1 k—1 .

i7]

fij ="t T rlik Tk Ty

*
k (. k=1 k=1 k=1 _k—1
lii = (ri,i trie Nk T >

n
riJ—riJ'

: . : B o n
The desired regular expression is: reg-expression(M) = > r; =) cp M,
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Example

0 _ .0 _ p=* 0 _ .0 _ px* *
”1,1—’2,2—” ’1,2—’2,1—[7 ab
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Example

0 _ .0 _ p=* 0 _ .0 _ px* *
”1,1—’2,2—” ’1,2—’2,1—b ab

1 _ (0 0 0 0 \* _ px
ni,= (’1,1 + ’1,1"1,1’1,1) =b
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Example

_ _ p* 0o _ 0 _ p=x *
hy="hy= b ho="hy= b*ab
1 _ (0 0 0 0 \* _ px
ni,= (’1,1 + ’1,1"1,1’1,1) =b

s = (r%z + rg,lrﬁlr{),z)* = (b* + b*ab*b*b*ab*)* = (b* + ab*a)*
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Example

— I 0 _ .0 _ p=* *
hy="hy= b ho="hy= b*ab
1 _ (0 0 0 0 \* _ px
ni,= (’1,1 + ’1,1"1,1’1,1) =b
) 0 0o 0 0 \* __ * * * ok gk *\k * * o\ %
2= (Ra+ninit,) = (b" + b ab*b*b*ab*)” = (b* + aba)

1 _ 0 0 .0 .0 _ g% * * ok * ok *
No=rHotifihs= b*ab* + b*b*ab* = b*ab™.
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Example

0 0 _ g
np=rh,=>b

0

0 0)*

0 0
(ma+rararis

(l’g’2 + rg,lr{),lr{),z)* — (b* + b*ab*b*b*ab*)* — (b* + ab*a)*
= "{),2 + ”{1,1’{),1’3,2 = b*ab* + b*b*ab* = b*ab*.
0,0

0 0
Ha+ hih

1y =

_ 0 p* *
ho,="r,=>b"ab

:b*

b*ab*
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Example

0 _ .0 _ p=* 0 _ .0 _ px* *
r1,1—’2,2—b fl,z—rm—b ab

_(,0 0 0 L0 \* _ px*
ra= (gt =b

Py = (r%, + 12,/ %) = (b* + b*ab*b*b*ab*)* = (b* + ab*a)*
r11,2 = "{),2 + "{),1"{),1rf,2 = b*ab* + b*b*ab* = b*ab*.

r21,1 = ’{),2 + ’3,1"{],1"{),1 = b*ab”

r12,1 = (rll,l + r11,2’21,2r21,1)* =
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Example

0 _ .0 _ p=* 0 _ .0 _ px* *
r1,1—’2,2—b fl,z—rm—b ab

1 _ (0 0 0 0 \% _ px*
ra= (gt =b

Py = (r%, + 12,/ %) = (b* + b*ab*b*b*ab*)* = (b* + ab*a)*
r11,2 = "{),2 + "{),1"{),1rf,2 = b*ab* + b*b*ab* = b*ab*.

r21,1 = ’{),2 + ’3,1"{],1"{),1 = b*ab”

r12,1 = (rll,l + r11,2’21,2r21,1)* =

SN
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Correctness

Similar to that of Floyd-Warshall algorithms for shortest paths via induction.

The length of the regular expression can be exponential in the size of the original DFA.
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THE END

(for now)
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18.7

Dynamic Programming: Postscript
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Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization J
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Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization J

@ How to come up with the recursion?

@ How to recognize that dynamic programming may apply?
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Some Tips

© Problems where there is a natural linear ordering: sequences, paths, intervals,
DAGs etc. Recursion based on ordering (left to right or right to left or topological

sort) usually works.
© Problems involving trees: recursion based on subtrees.

© More generally:

@ Problem admits a natural recursive divide and conquer

@ If optimal solution for whole problem can be simply composed from optimal
solution for each separate pieces then plain divide and conquer works directly

@ If optimal solution depends on all pieces then can apply dynamic programming if
interface/interaction between pieces is limited. Augment recursion to not simply
find an optimum solution but also an optimum solution for each possible way to
interact with the other pieces.
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Examples

© Longest Increasing Subsequence: break sequence in the middle say. What is the
interaction between the two pieces in a solution?

Sequence Alignment: break both sequences in two pieces each. What is the
interaction between the two sets of pieces?

interaction between the subtrees?

Independent Set in an graph: break graph into two graphs. What is the

(2]

© Independent Set in a Tree: break tree at root into subtrees. What is the

o
interaction? Very high!

o

Knapsack: Split items into two sets of half each. What is the interaction?
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