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Shortest Paths with Negative Length Edges
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18.1.1
Why Dijkstra’s algorithm fails with negative
edges
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Single-Source Shortest Paths with Negative Edge Lengths
Problem statement

Single-Source Shortest Path
Problems
Input: A directed graph G = (V ,E)
with arbitrary (including negative) edge
lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path
from s to t.

2 Given node s find shortest path
from s to all other nodes.
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What are the distances computed by Dijkstra’s algorithm?
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The distance as computed by Dijk-
stra algorithm starting from s:

(A) s = 0, x = 5, y = 1, z = 0.
(B) s = 0, x = 1, y = 2, z = 5.
(C) s = 0, x = 5, y = 1, z = 2.
(D) IDK.
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Dijkstra’s Algorithm and Negative Lengths
With negative length edges, Dijkstra’s algorithm can fail
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False assumption: Dijkstra’s algorithm is based on the assumption that if
s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk then
dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k. Holds true only for non-negative edge
lengths.
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Shortest Paths with Negative Lengths
Lemma 18.1.
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk then for 1 ≤ i < k:

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi
2 False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only for non-negative

edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
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THE END
...

(for now)
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18.1.2
But wait! Things get worse: Negative cycles
FLNAME:18.1.2.0 ZZZ:18.1.2.0 But wait! Things get worse: Negative cycles
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Negative Length Cycles
Definition 18.2.
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
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What is the shortest path distance between s and t?
Reminder: Paths have to be simple...
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Shortest Paths and Negative Cycles
Given G = (V ,E) with edge lengths and s, t. Suppose

1 G has a negative length cycle C , and
2 s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
Possible answers: Define shortest distance to be:

1 undefined, that is −∞, OR
2 the length of a shortest simple path from s to t.
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Really bad new about negative edges, and shortest path...
Lemma 18.3.
If there is an efficient algorithm to find a shortest simple s → t path in a graph with
negative edge lengths, then there is an efficient algorithm to find the longest simple
s → t path in a graph with positive edge lengths.

Finding the s → t longest path is difficult. NP-Hard!
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THE END
...

(for now)
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18.1.3
Restating problem of Shortest path with
negative edges
FLNAME:18.1.3.0 ZZZ:18.1.3.0 Restating problem of Shortest path with negative edges
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Alternatively: Finding Shortest Walks
Given a graph G = (V ,E):

1 A path is a sequence of distinct vertices v1, v2, . . . , vk such that (vi , vi+1) ∈ E
for 1 ≤ i ≤ k − 1.

2 A walk is a sequence of vertices v1, v2, . . . , vk such that (vi , vi+1) ∈ E for
1 ≤ i ≤ k − 1. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a shortest walk from u to v .
1 If there is a walk from u to v that contains negative length cycle then

dist(u, v) = −∞
2 Else there is a path with at most n − 1 edges whose length is equal to the length

of a shortest walk and dist(u, v) is finite
Helpful to think about walks
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Shortest Paths with Negative Edge Lengths
Problems

Algorithmic Problems
Input: A directed graph G = (V ,E) with edge lengths (could be negative). For edge
e = (u, v), `(e) = `(u, v) is its length.

Questions:
1 Given nodes s, t, either find a negative length cycle C that s can reach or find a

shortest path from s to t.
2 Given node s, either find a negative length cycle C that s can reach or find

shortest path distances from s to all reachable nodes.
3 Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths
In Undirected Graphs

Note: With negative lengths, shortest path problems and negative cycle detection in
undirected graphs cannot be reduced to directed graphs by bi-directing each undirected
edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and
significantly more involved than those for directed graphs. One need to compute
T -joins in the relevant graph. Pretty painful stuff.
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THE END
...

(for now)
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18.1.4
Applications of shortest path for negative
weights on edges
FLNAME:18.1.4.0 ZZZ:18.1.4.0 Applications of shortest path for negative weights on edges
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Why negative lengths?
Several Applications

1 Shortest path problems useful in modeling many situations — in some negative
lengths are natural

2 Negative length cycle can be used to find arbitrage opportunities in currency
trading

3 Important sub-routine in algorithms for more general problem: minimum-cost flow
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Negative cycles
Application to Currency Trading

Currency Trading
Input: n currencies and for each ordered pair (a, b) the exchange rate for converting
one unit of a into one unit of b .
Questions:

1 Is there an arbitrage opportunity?
2 Given currencies s, t what is the best way to convert s to t (perhaps via other

intermediate currencies)?

Concrete example:
1 1 Chinese Yuan = 0.1116 Euro
2 1 Euro = 1.3617 US dollar
3 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging 1 $ → Yuan
→ Euro → $, we get: 0.1116 ∗
1.3617 ∗ 7.1 = 1.07896$.
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Reducing Currency Trading to Shortest Paths
Observation: If we convert currency i to j via intermediate currencies k1, k2, . . . , kh
then one unit of i yields exch(i , k1)× exch(k1, k2) . . .× exch(kh, j) units of j .

Create currency trading directed graph G = (V ,E):
1 For each currency i there is a node vi ∈ V
2 E = V × V : an edge for each pair of currencies
3 edge length `(vi , vj) = − log(exch(i , j)) can be negative

Exercise: Verify that
1 There is an arbitrage opportunity if and only if G has a negative length cycle.
2 The best way to convert currency i to currency j is via a shortest path in G from i

to j . If d is the distance from i to j then one unit of i can be converted into 2d

units of j .
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Reducing Currency Trading to Shortest Paths
Math recall - relevant information

1 log(α1 ∗ α2 ∗ · · · ∗ αk) = logα1 + logα2 + · · · + logαk .
2 log x > 0 if and only if x > 1 .
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THE END
...

(for now)
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18.2
Bellman Ford Algorithm
FLNAME:18.2.0.0 ZZZ:18.2.0.0 Bellman Ford Algorithm
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18.2.1
Shortest path with negative lengths: The
challenge
FLNAME:18.2.1.0 ZZZ:18.2.1.0 Shortest path with negative lengths: The challenge
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Shortest Paths with Negative Lengths
Lemma 18.1.
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk then for 1 ≤ i < k:

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi
2 False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only for non-negative

edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
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THE END
...

(for now)
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18.2.2
Shortest path via number of hops
FLNAME:18.2.2.0 ZZZ:18.2.2.0 Shortest path via number of hops
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Shortest Paths and Recursion
1 Compute the shortest path distance from s to t recursively?
2 What are the smaller sub-problems?

Lemma 18.2.
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk then for 1 ≤ i < k:

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recursion: Bellman-Ford Algorithm
Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.
Note: dist(s, v) = d(v, n − 1). Recursion for d(v, k):

d(v, k) = min

{
minu∈V (d(u, k − 1) + `(u, v)).
d(v, k − 1)

Base case: d(s, 0) = 0 and d(v, 0) =∞ for all v 6= s.
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THE END
...

(for now)
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18.2.3
The Bellman-Ford Algorithm
FLNAME:18.2.3.0 ZZZ:18.2.3.0 The Bellman-Ford Algorithm
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Bellman-Ford Algorithm
for each u ∈ V do

d(u, 0)←∞
d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v, k)← d(v, k − 1)
for each edge (u, v) ∈ in(v) do

d(v, k) = min{d(v, k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v, n − 1)

Running time: O(mn) Space: O(m + n2)
Space can be reduced to O(m + n).
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Bellman-Ford Algorithm: Cleaner version
for each u ∈ V do

d(u)←∞
d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v) = min{d(v), d(u) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v)

Running time: O(mn) Space: O(m + n)
Exercise: Argue that this achieves same results as algorithm on previous slide.
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THE END
...

(for now)
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18.2.3.1
Correctness of the Bellman-Ford Algorithm
FLNAME:18.2.3.1 ZZZ:18.2.3.1 Correctness of the Bellman-Ford Algorithm
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Bellman-Ford Algorithm: Modified for analysis
for each u ∈ V do

d(u, 0)←∞
d(s, 0)← 0

for k = 1 to n do
for each v ∈ V do

d(v, k)← d(v, k − 1)
for each edge (u, v) ∈ in(v) do

d(v, k) = min{d(v, k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v, n − 1)
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Walks computed correctly
Lemma 18.3.
For each v , d(v, k) is the length of a shortest walk from s to v with at most k hops.

Proof.
Standard induction (left as exercise).
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Bellman-Ford computes the shortest paths correctly
Lemma 18.4.
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v, n) = d(v, n − 1).

Also, d(v, n − 1) is the length of the shortest path between s and v .

Proof.
Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise ∃ neg cycle).
A path has at most n − 1 edges.
=⇒ Len shortest walk from s to v with at most n − 1 edges
= Len shortest walk from s to v
= Len shortest path from s to v .
By Lemma 18.3 : d(v, n) = d(v, n − 1) = dist(s, v), for all v .
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THE END
...

(for now)
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18.2.4
Bellman-Ford: Detecting negative cycles
FLNAME:18.2.4.0 ZZZ:18.2.4.0 Bellman-Ford: Detecting negative cycles
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Correctness: detecting negative length cycle
Lemma 18.5.
Suppose G has a negative cycle C reachable from s. Then there is some node v ∈ C
such that d(v, n) < d(v, n − 1).

Proof.
Suppose not. Let C = v1 → v2 → . . .→ vh → v1 be negative length cycle reachable
from s. d(vi , n − 1) is finite for 1 ≤ i ≤ h since C is reachable from s. By
assumption d(v, n) ≥ d(v, n − 1) for all v ∈ C ; implies no change in nth iteration;
d(vi , n − 1) = d(vi , n) for 1 ≤ i ≤ h. This means
d(vi , n − 1) ≤ d(vi−1, n − 1) + `(vi−1, vi) for 2 ≤ i ≤ h and
d(v1, n − 1) ≤ d(vn, n − 1) + `(vn, v1). Adding up all these inequalities results in the
inequality 0 ≤ `(C) which contradicts the assumption that `(C) < 0.
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Proof of Lemma 18.5 in more detail...

s

v0

v1 v2

v3

v4v5

C

d(v1, n) ≤ d(v0, n − 1) + `(v0, v1)

d(v2, n) ≤ d(v1, n − 1) + `(v1, v2)

. . .

d(vi , n) ≤ d(vi−1, n − 1) + `(vi−1, vi)

. . .

d(vk, n) ≤ d(vk−1, n − 1) + `(vk−1, vk)

d(v0, n) ≤ d(vk, n − 1) + `(vk, v0)
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C

k∑
i=0

d(vi , n) ≤
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k∑

i=1

`(vi−1, vi) + `(vk, v0)

0 ≤
k∑

i=1

`(vi−1, vi) + `(vk, v0) = len(C) .

C is a not a negative cycle. Contradiction.
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Negative cycles can not hide
Lemma 18.4 restated
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v, n) = d(v, n − 1).

Also, d(v, n − 1) is the length of the shortest path between s and v .

Lemma 18.4 and Lemma 18.5 put together are the following:

Lemma 18.6.
G has a negative length cycle reachable from s ⇐⇒ there is some node v such that
d(v, n) < d(v, n − 1).

46 / 95



Bellman-Ford: Negative Cycle Detection
The official final version

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v) = min{d(v), d(u) + `(u, v)}

(* One more iteration to check if distances change *)
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
if (d(v) > d(u) + `(u, v))

Output ``Negative Cycle''

for each v ∈ V do
dist(s, v)← d(v)
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THE END
...

(for now)
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18.2.5
Variants on Bellman-Ford
FLNAME:18.2.5.0 ZZZ:18.2.5.0 Variants on Bellman-Ford
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Finding the Paths and a Shortest Path Tree
How do we find a shortest path tree in addition to distances?

For each v the d(v) can only get smaller as algorithm proceeds.
If d(v) becomes smaller it is because we found a vertex u such that
d(v) > d(u) + `(u, v) and we update d(v) = d(u) + `(u, v). That is, we found
a shorter path to v through u.
For each v have a prev(v) pointer and update it to point to u if v finds a shorter
path via u.
At end of algorithm prev(v) pointers give a shortest path tree oriented towards
the source s.
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Negative Cycle Detection
Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

1 Bellman-Ford checks whether there is a negative cycle C that is reachable from a
specific vertex s. There may negative cycles not reachable from s.

2 Run Bellman-Ford |V | times, once from each node u?
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Negative Cycle Detection
1 Add a new node s′ and connect it to all nodes of G with zero length edges.

Bellman-Ford from s′ will fill find a negative length cycle if there is one. Exercise:
why does this work?

2 Negative cycle detection can be done with one Bellman-Ford invocation.
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THE END
...

(for now)
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Shortest Paths in DAGs
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Shortest Paths in a DAG
Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary (including negative)
edge lengths. For edge e = (u, v), `(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.
2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs
1 No cycles and hence no negative length cycles! Hence can find shortest paths even

for negative length edges
2 Can order nodes using topological sort
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Algorithm for DAGs
1 Want to find shortest paths from s. Ignore nodes not reachable from s.
2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:
1 shortest path from s to vi cannot use any node from vi+1, . . . , vn
2 can find shortest paths in topological sort order.
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Algorithm for DAGs
for i = 1 to n do

d(s, vi ) =∞
d(s, s) = 0

for i = 1 to n − 1 do
for each edge (vi , vj ) in Adj(vi ) do

d(s, vj ) = min{d(s, vj ), d(s, vi ) + `(vi , vj )}

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative edge lengths and hence
can find longest paths in a DAG.
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Bellman-Ford and DAGs
Bellman-Ford is based on the following principles:

The shortest walk length from s to v with at most k hops can be computed via
dynamic programming
G has a negative length cycle reachable from s iff there is a node v such that
shortest walk length reduces after n hops.

We can find hop-constrained shortest paths via graph reduction.
Given G = (V ,E) with edge lengths `(e) and integer k construction new layered graph
G ′ = (V ′,E ′) as follows.

V ′ = V × {0, 1, 2, . . . , k}.
E ′ = {((u, i), (v, i + 1) | (u, v) ∈ E , 0 ≤ i < k},
`((u, i), (v, i + 1)) = `(u, v)

Lemma 18.1.
Shortest path distance from (u, 0) to (v, k) in G ′ is equal to the shortest walk from u
to v in G with exactly k edges.
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Layered DAG: Figure
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THE END
...

(for now)
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18.4.1
Problem definition and what we can already
do
FLNAME:18.4.1.0 ZZZ:18.4.1.0 Problem definition and what we can already do
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Shortest Path Problems
Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge lengths (or costs).
For edge e = (u, v), `(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.
2 Given node s find shortest path from s to all other nodes.
3 Find shortest paths for all pairs of nodes.
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SSSP: Single-Source Shortest Paths
Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge lengths. For edge
e = (u, v), `(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.
2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time: O((m + n) log n)
with heaps and O(m + n log n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).
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All-Pairs Shortest Paths
Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge lengths. For edge

e = (u, v), `(e) = `(u, v) is its length.
1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
1 Non-negative lengths. O(nm log n) with heaps and O(nm + n2 log n) using

advanced priority queues.
2 Arbitrary edge lengths: O(n2m).

Θ
(
n4) if m = Ω

(
n2).

Can we do better?
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THE END
...

(for now)

66 / 95



Algorithms & Models of Computation
CS/ECE 374, Fall 2020

18.4.2
All Pairs Shortest Paths: A recursive
solution
FLNAME:18.4.2.0 ZZZ:18.4.2.0 All Pairs Shortest Paths: A recursive solution
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All-Pairs: Recursion on index of intermediate nodes
1 Number vertices arbitrarily as v1, v2, . . . , vn
2 dist(i , j , k): length of shortest walk from vi to vj among all walks in which the

largest index of an intermediate node is at most k (could be −∞ if there is a
negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100
dist(i , j , 1) = 9
dist(i , j , 2) = 8
dist(i , j , 3) = 5
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dist(i , j , 3) = 5
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For the following graph, dist(i, j, 2) is...

i

8

5

200

1

10

2
j

3

5

1

1

2

2

(A) 9
(B) 10
(C) 11
(D) 12
(E) 15
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All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i , j , k) = min

{
dist(i , j , k − 1)
dist(i , k, k − 1) + dist(k, j , k − 1)

Base case: dist(i , j , 0) = `(i , j) if (i , j) ∈ E , otherwise∞
Correctness: If i → j shortest walk goes through k then k occurs only once on the
path — otherwise there is a negative length cycle.
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All-Pairs: Recursion on index of intermediate nodes
If i can reach k and k can reach j and dist(k, k, k − 1) < 0 then G has a negative
length cycle containing k and dist(i , j , k) = −∞.

Recursion below is valid only if dist(k, k, k − 1) ≥ 0. We can detect this during the
algorithm or wait till the end.

dist(i , j , k) = min

{
dist(i , j , k − 1)
dist(i , k, k − 1) + dist(k, j , k − 1)
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THE END
...

(for now)
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18.4.3
Floyd-Warshall algorithm
FLNAME:18.4.3.0 ZZZ:18.4.3.0 Floyd-Warshall algorithm
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Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

d(i , j , k) = min

{
d(i , j , k − 1)
d(i , k, k − 1) + d(k, j , k − 1)

for i = 1 to n do
for j = 1 to n do

d(i , j , 0) = `(i , j)
(* `(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

d(i , j , k) = min

{
d(i , j , k − 1),
d(i , k, k − 1) + d(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output ∃ negative cycle in G

Running Time: Θ(n3).
Space: Θ(n3).

Correctness:
via induction and recur-
sive definition
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Floyd-Warshall Algorithm: Finding the Paths
Question: Can we find the paths in addition to the distances?

1 Create a n × n array Next that stores the next vertex on shortest path for each
pair of vertices

2 With array Next, for any pair of given vertices i , j can compute a shortest path in
O(n) time.
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Floyd-Warshall Algorithm
Finding the Paths

for i = 1 to n do
for j = 1 to n do

d(i , j , 0) = `(i , j)
(* `(i , j) =∞ if (i , j) not edge, 0 if i = j *)

Next(i , j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (d(i , j , k − 1) > d(i , k, k − 1) + d(k, j , k − 1)) then
d(i , j , k) = d(i , k, k − 1) + d(k, j , k − 1)
Next(i , j) = k

for i = 1 to n do
if (d(i , i , n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i , j describe an O(n) algorithm to
find a i -j shortest path. 76 / 95



THE END
...

(for now)
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Summary of shortest path algorithms
FLNAME:18.5.0.0 ZZZ:18.5.0.0 Summary of shortest path algorithms
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Summary of results on shortest paths
Single source
No negative edges Dijkstra O(n log n + m)
Edge lengths can be negative Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O
(
n2 log n + nm

)
No negative cycles n * Bellman Ford O

(
n2m

)
= O

(
n4)

No negative cycles (*) BF + n * Dijkstra O
(
nm + n2 log n

)
No negative cycles Floyd-Warshall O

(
n3)

Unweighted Matrix multiplication O(n2.38), O(n2.58)
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Summary of results on shortest paths
More details

(*): The algorithm for the case that there are no negative cycles, and doing all shortest
paths, works by computing a potential function using Bellman-Ford and then doing
Dijkstra. It is mentioned for the sake of completeness, but it outside the scope of the
class.
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THE END
...

(for now)
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18.6
DFA to Regular Expression
FLNAME:18.6.0.0 ZZZ:18.6.0.0 DFA to Regular Expression
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Back to Regular Languages
We saw the following two theorems previously.

Theorem 18.1.
For every NFA N over a finite alphabet Σ there is DFA M such that L(M) = L(N).

Theorem 18.2.
For every regular expression r over finite alphabet Σ there is a NFA N such that
L(N) = L(r).

We claimed the following theorem which would prove equivalence of NFAs, DFAs and
regular expressions.

Theorem 18.3.
For every DFA M over a finite alphabet Σ there is a regular expression r such that
L(M) = L(r).
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DFA to Regular Expression
Given DFA M = (Q,Σ, δ, q1, F ) want to construct an equivalent regular expression r .

Idea:
Number states of DFA: Q = {q1, . . . , qn} where |Q| = n.
Define Li ,j = {w | δ(qi ,w) = qj}. Note Li ,j is regular. Why?
L(M) = ∪qi∈F L1,i .
Obtain regular expression ri ,j for Li ,j .
Then r =

∑
qi∈F r1,i is regular expression for L(M) – here the summation is the

or operator.

Note: Using q1 for start state is intentional to help in the notation for the recursion.
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A recursive expression for Li,j
Define Lk

i ,j be set of strings w in Li ,j such that the highest index state visited by M on
walk from qi to qj (not counting end points i and j) on input w is at most k.

Claim: L0
i ,i = {a ∈ Σ | δ(qi , a) = qi}∗

L0
i ,j = L0

i ,i{a ∈ Σ | δ(qi , a) = qj}L0
j,j if i 6= j

Lk
i ,j = Lk−1

i ,j ∪
(

Lk−1
i ,k · L

k−1
k,k · L

k−1
k,j

)
i 6= j

Lk
i ,i =

(
Lk−1

i ,i ∪ Lk−1
i ,k · L

k−1
k,k · L

k−1
k,i

)∗

Li ,j = Ln
i ,j .
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A recursive expression for Li,j

Claim: L0
i ,i = {a ∈ Σ | δ(qi , a) = qi}∗

L0
i ,j = L0

i ,i{a ∈ Σ | δ(qi , a) = qj}L0
j,j if i 6= j

Lk
i ,j = Lk−1

i ,j ∪
(

Lk−1
i ,k · L

k−1
k,k · L

k−1
k,j

)
i 6= j

Lk
i ,i =

(
Lk−1

i ,i ∪ Lk−1
i ,k · L

k−1
k,k · L

k−1
k,i

)∗

Li ,j = Ln
i ,j .

Proof: by picture

qi qj

qk
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A recursive expression for Li,j

Claim: L0
i ,i = {a ∈ Σ | δ(qi , a) = qi}∗

L0
i ,j = L0

i ,i{a ∈ Σ | δ(qi , a) = qj}L0
j,j if i 6= j

Lk
i ,j = Lk−1

i ,j ∪
(

Lk−1
i ,k · L

k−1
k,k · L

k−1
k,j

)
i 6= j

Lk
i ,i =

(
Lk−1

i ,i ∪ Lk−1
i ,k · L

k−1
k,k · L

k−1
k,i

)∗

Li ,j = Ln
i ,j .

The desired language is

L(M) = ∪qi∈F L1,i = ∪qi∈F Ln
1,i
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A regular expression for L(M)

r0
i ,i =

 ∑
a∈Σ:δ(qi ,a)=qi

a

∗

r0
i ,j = r0

i ,i

( ∑
a∈Σ:δ(qi ,a)=qj

a
)

r0
j,j if i 6= j

rk
i ,j = rk−1

i ,j + rk−1
i ,k rk−1

k,k rk−1
k,j i 6= j

rk
i ,i =

(
rk−1
i ,i + rk−1

i ,k · r
k−1
k,k · r

k−1
k,i

)∗

ri ,j = rn
i ,j .

The desired regular expression is: reg-expression(M) =
∑

qi∈F r1,i =
∑

qi∈F rn
1,i .

88 / 95



Example

r0
1,1 = r0

2,2 = b∗ r0
1,2 = r0

2,1 = b∗ab∗

q1 q2
a

a

b
b

r1
1,1 = (r0

1,1 + r0
1,1r0

1,1r0
1,1)

∗ = b∗

r1
2,2 =

(
r0
2,2 + r0

2,1r0
1,1r0

1,2
)∗

= (b∗ + b∗ab∗b∗b∗ab∗)∗ = (b∗ + ab∗a)∗

r1
1,2 = r0

1,2 + r0
1,1r0

1,1r0
1,2 = b∗ab∗ + b∗b∗ab∗ = b∗ab∗.

r1
2,1 = r0

1,2 + r0
2,1r0

1,1r0
1,1 = b∗ab∗

r2
1,1 =

(
r1
1,1 + r1

1,2r1
2,2r1

2,1
)∗

= · · ·
r1
2,2 = · · ·
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Correctness
Similar to that of Floyd-Warshall algorithms for shortest paths via induction.

The length of the regular expression can be exponential in the size of the original DFA.
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THE END
...

(for now)
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18.7
Dynamic Programming: Postscript
FLNAME:18.7.0.0 ZZZ:18.7.0.0 Dynamic Programming: Postscript
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Dynamic Programming: Postscript
Dynamic Programming = Smart Recursion + Memoization

1 How to come up with the recursion?
2 How to recognize that dynamic programming may apply?
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Some Tips
1 Problems where there is a natural linear ordering: sequences, paths, intervals,

DAGs etc. Recursion based on ordering (left to right or right to left or topological
sort) usually works.

2 Problems involving trees: recursion based on subtrees.
3 More generally:

1 Problem admits a natural recursive divide and conquer
2 If optimal solution for whole problem can be simply composed from optimal

solution for each separate pieces then plain divide and conquer works directly
3 If optimal solution depends on all pieces then can apply dynamic programming if

interface/interaction between pieces is limited. Augment recursion to not simply
find an optimum solution but also an optimum solution for each possible way to
interact with the other pieces.
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Examples
1 Longest Increasing Subsequence: break sequence in the middle say. What is the

interaction between the two pieces in a solution?
2 Sequence Alignment: break both sequences in two pieces each. What is the

interaction between the two sets of pieces?
3 Independent Set in a Tree: break tree at root into subtrees. What is the

interaction between the subtrees?
4 Independent Set in an graph: break graph into two graphs. What is the

interaction? Very high!
5 Knapsack: Split items into two sets of half each. What is the interaction?
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