CS/ECE 374, Fall 2020

Dynamic Programming: Shortest Paths and DFA to Reg Expressions

Lecture 18 Thursday, October 29, 2020

CS/ECE 374, Fall 2020

18.1

Shortest Paths with Negative Length Edges

CS/ECE 374, Fall 2020

18.1.1

Why Dijkstra's algorithm fails with negative edges

Single-Source Shortest Paths with Negative Edge Lengths

Problem statement

Single-Source Shortest Path Problems

Input: A <u>directed</u> graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
 - Given node s find shortest path from s to all other nodes.

Single-Source Shortest Paths with Negative Edge Lengths

Problem statement

Single-Source Shortest Path Problems

Input: A <u>directed</u> graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

What are the distances computed by Dijkstra's algorithm?

The distance as computed by Dijkstra algorithm starting from s:

- **3** s = 0, x = 1, y = 2, z = 5.
- IDK.

With negative length edges, Dijkstra's algorithm can fail

False assumption: Dijkstra's algorithm is based on the assumption that if $s = v_0 \rightarrow v_1 \rightarrow v_2 \dots \rightarrow v_k$ is a shortest path from s to v_k then $dist(s, v_i) \leq dist(s, v_{i+1})$ for $0 \leq i < k$. Holds true only for non-negative edge lengths.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

- $oldsymbol{0} \quad s = oldsymbol{v}_0
 ightarrow oldsymbol{v}_1
 ightarrow oldsymbol{v}_2
 ightarrow \ldots
 ightarrow oldsymbol{v}_i$ is a shortest path from $oldsymbol{s}$ to $oldsymbol{v}_i$
- **2** False: $dist(s, v_i) \leq dist(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let **G** be a directed graph with arbitrary edge lengths. If $s = \mathbf{v}_0 \to \mathbf{v}_1 \to \mathbf{v}_2 \to \ldots \to \mathbf{v}_k$ is a shortest path from s to \mathbf{v}_k then for $1 \le i < k$:

- $lackbox{0} \quad s = m{v}_0
 ightarrow m{v}_1
 ightarrow m{v}_2
 ightarrow \ldots
 ightarrow m{v}_i$ is a shortest path from $m{s}$ to $m{v}_i$
- **2** False: $dist(s, v_i) \leq dist(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from **s** to v_k then for $1 \leq i < k$:

- $oldsymbol{0} \quad s = oldsymbol{v}_0
 ightarrow oldsymbol{v}_1
 ightarrow oldsymbol{v}_2
 ightarrow \ldots
 ightarrow oldsymbol{v}_i$ is a shortest path from $oldsymbol{s}$ to $oldsymbol{v}_i$
- **2** False: $dist(s, v_i) \leq dist(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

THE END

...

(for now)

CS/ECE 374, Fall 2020

18.1.2

But wait! Things get worse: Negative cycles

Negative Length Cycles

Definition 18.2.

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.

Negative Length Cycles

Definition 18.2.

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.

Negative Length Cycles

Definition 18.2.

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.

What is the shortest path distance between s and t? Reminder: Paths have to be simple...

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- $oldsymbol{0}$ $oldsymbol{G}$ has a negative length cycle $oldsymbol{C}$, and
- s can reach C and C can reach t.

Question: What is the shortest <u>distance</u> from **s** to **t**? Possible answers: Define shortest distance to be:

- \bigcirc undefined, that is $-\infty$, OR
- ② the length of a shortest $\underline{\text{simple}}$ path from s to t.

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- $oldsymbol{0}$ G has a negative length cycle $oldsymbol{C}$, and
- 2 s can reach C and C can reach t.

Question: What is the shortest <u>distance</u> from *s* to *t*? Possible answers: Define shortest distance to be:

- \bullet undefined, that is $-\infty$, OR
- ② the length of a shortest $\underline{\text{simple}}$ path from s to t.

Really bad new about negative edges, and shortest path...

Lemma 18.3.

If there is an efficient algorithm to find a shortest simple $s \to t$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the <u>longest</u> simple $s \to t$ path in a graph with positive edge lengths.

Finding the $s \rightarrow t$ longest path is difficult. NP-Hard!

THE END

...

(for now)

CS/ECE 374, Fall 2020

18.1.3

Restating problem of Shortest path with negative edges

Alternatively: Finding Shortest Walks

Given a graph $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E})$:

- **1** A path is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$.
- ② A walk is a sequence of vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.

- ① If there is a walk from \boldsymbol{u} to \boldsymbol{v} that contains negative length cycle then $dist(\boldsymbol{u},\boldsymbol{v})=-\infty$
- 2 Else there is a path with at most n-1 edges whose length is equal to the length of a shortest walk and dist(u, v) is finite

Helpful to think about walks

Shortest Paths with Negative Edge Lengths

Problems

Algorithmic Problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Questions:

- Given nodes s, t, either find a negative length cycle C that s can reach or find a shortest path from s to t.
- ② Given node s, either find a negative length cycle C that s can reach or find shortest path distances from s to all reachable nodes.
- 3 Check if G has a negative length cycle or not.

Shortest Paths with Negative Edge Lengths

In Undirected Graphs

<u>Note</u>: With negative lengths, shortest path problems and negative cycle detection in undirected graphs cannot be reduced to directed graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and significantly more involved than those for directed graphs. One need to compute T-joins in the relevant graph. Pretty painful stuff.

THE END

...

(for now)

CS/ECE 374, Fall 2020

18.1.4

Applications of shortest path for negative weights on edges

Why negative lengths?

Several Applications

- Shortest path problems useful in modeling many situations in some negative lengths are natural
- Negative length cycle can be used to find arbitrage opportunities in currency trading
- Important sub-routine in algorithms for more general problem: minimum-cost flow

Negative cycles

Application to Currency Trading

Currency Trading

<u>Input</u>: n currencies and for each ordered pair (a, b) the <u>exchange rate</u> for converting one unit of a into one unit of b.

Questions:

- Is there an arbitrage opportunity?
- ② Given currencies s, t what is the best way to convert s to t (perhaps via other intermediate currencies)?

Concrete example:

- **2 1** Euro = **1.3617** US dollar
- **3** 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging $1 \ \$ \to \mathsf{Yuan}$

 \rightarrow Euro \rightarrow \$, we get: **0.1116** *

1.3617 * 7.1 = 1.07896\$.

Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of j.

Create currency trading directed graph G = (V, E):

- ① For each currency i there is a node $v_i \in V$
- ② $\boldsymbol{E} = \boldsymbol{V} \times \boldsymbol{V}$: an edge for each pair of currencies

Exercise: Verify that

- lacktriangle There is an arbitrage opportunity if and only if lacktriangle has a negative length cycle.
- The best way to convert currency i to currency j is via a shortest path in G from to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.

Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of j.

Create currency trading directed graph G = (V, E):

- lacktriangledown For each currency i there is a node $v_i \in V$
- **2** $\boldsymbol{E} = \boldsymbol{V} \times \boldsymbol{V}$: an edge for each pair of currencies
- lacktriangledown edge length $\ell(\mathbf{v_i},\mathbf{v_j}) = -\log(exch(i,j))$ can be negative

Exercise: Verify that

- $lue{}$ There is an arbitrage opportunity if and only if $lue{}$ has a negative length cycle.
- ② The best way to convert currency i to currency j is via a shortest path in G from to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.

Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of j.

Create currency trading directed graph G = (V, E):

- lacktriangledown For each currency i there is a node $v_i \in V$
- **2** $\boldsymbol{E} = \boldsymbol{V} \times \boldsymbol{V}$: an edge for each pair of currencies
- lacktriangledown edge length $\ell(\mathbf{v_i},\mathbf{v_j}) = -\log(\mathbf{exch}(\mathbf{i},\mathbf{j}))$ can be negative

Exercise: Verify that

- lacktriangledown There is an arbitrage opportunity if and only if lacktriangledown has a negative length cycle.
- ② The best way to convert currency i to currency j is via a shortest path in G from to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.

Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of j.

Create currency trading directed graph G = (V, E):

- lacksquare For each currency i there is a node $v_i \in V$
- **2** $\boldsymbol{E} = \boldsymbol{V} \times \boldsymbol{V}$: an edge for each pair of currencies
- lacktriangledown edge length $\ell(\mathbf{v_i},\mathbf{v_j}) = -\log(\mathbf{exch}(\mathbf{i},\mathbf{j}))$ can be negative

Exercise: Verify that

- lacktriangle There is an arbitrage opportunity if and only if lacktriangle has a negative length cycle.
- ② The best way to convert currency i to currency j is via a shortest path in G from i to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.

Reducing Currency Trading to Shortest Paths

Math recall - relevant information

THE END

. . .

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.2

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.2.1

Shortest path with negative lengths: The challenge

Shortest Paths with Negative Lengths

Lemma 18.1.

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for 1 < i < k:

- $oldsymbol{0} \quad s = oldsymbol{v}_0
 ightarrow oldsymbol{v}_1
 ightarrow oldsymbol{v}_2
 ightarrow \ldots
 ightarrow oldsymbol{v}_i$ is a shortest path from $oldsymbol{s}$ to $oldsymbol{v}_i$
- **2** False: $dist(s, v_i) \leq dist(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from **s** to v_k then for $1 \leq i < k$:

- $lackbox{0} \quad s = m{v}_0
 ightarrow m{v}_1
 ightarrow m{v}_2
 ightarrow \ldots
 ightarrow m{v}_i$ is a shortest path from $m{s}$ to $m{v}_i$
- **2** False: $dist(s, v_i) \leq dist(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from **s** to v_k then for $1 \leq i < k$:

- $lackbox{0} \quad s = m{v}_0
 ightarrow m{v}_1
 ightarrow m{v}_2
 ightarrow \ldots
 ightarrow m{v}_i$ is a shortest path from $m{s}$ to $m{v}_i$
- **2** False: $dist(s, v_i) \leq dist(s, v_k)$ for $1 \leq i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.2.2

Shortest path via number of hops

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Lemma 18.2

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

ullet $s=oldsymbol{v}_0
ightarrowoldsymbol{v}_1
ightarrowoldsymbol{v}_2
ightarrow\ldots
ightarrowoldsymbol{v}_i$ is a shortest path from s to $oldsymbol{v}_i$

Sub-problem idea: paths of fewer hops/edges

Shortest Paths and Recursion

Compute the shortest path distance from s to t recursively?

 \bullet $s = \mathbf{v}_0 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \ldots \rightarrow \mathbf{v}_i$ is a shortest path from s to \mathbf{v}_i

What are the smaller sub-problems?

Lemma 18.2.

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from **s** to v_k then for $1 \leq i < k$:

Sub-problem idea: paths of fewer hops/edges

Shortest Paths and Recursion

Compute the shortest path distance from s to t recursively?

 \bullet $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i

What are the smaller sub-problems?

Lemma 18.2.

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

Sub-problem idea: paths of fewer hops/edges

Single-source problem: fix source s. Assume that all nodes can be reached by s in GAssume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1). Recursion for d(v, k):

$$oldsymbol{d}(oldsymbol{v},oldsymbol{k}) = \min egin{cases} \min_{oldsymbol{u} \in oldsymbol{V}} (oldsymbol{d}(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + \ell(oldsymbol{u},oldsymbol{v}). \ oldsymbol{d}(oldsymbol{v},oldsymbol{k}-oldsymbol{1}) \end{cases}$$

Base case: d(s,0) = 0 and $d(v,0) = \infty$ for all $v \neq s$.

Single-source problem: fix source s. Assume that all nodes can be reached by s in GAssume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1). Recursion for d(v, k):

$$oldsymbol{d}(oldsymbol{v},oldsymbol{k}) = \min egin{cases} \min_{oldsymbol{u} \in oldsymbol{V}} (oldsymbol{d}(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + \ell(oldsymbol{u},oldsymbol{v}). \ oldsymbol{d}(oldsymbol{v},oldsymbol{k}-oldsymbol{1}) \end{cases}$$

Base case: d(s,0) = 0 and $d(v,0) = \infty$ for all $v \neq s$.

Single-source problem: fix source s. Assume that all nodes can be reached by s in GAssume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1). Recursion for d(v, k):

$$oldsymbol{d}(oldsymbol{v},oldsymbol{k}) = \min egin{cases} \min_{oldsymbol{u} \in oldsymbol{V}} (oldsymbol{d}(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + \ell(oldsymbol{u},oldsymbol{v}). \ oldsymbol{d}(oldsymbol{v},oldsymbol{k}-oldsymbol{1}) \end{cases}$$

Base case: d(s,0)=0 and $d(v,0)=\infty$ for all $v\neq s$.

Single-source problem: fix source **s**.

Assume that all nodes can be reached by \boldsymbol{s} in \boldsymbol{G}

Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1). Recursion for d(v, k):

$$oldsymbol{d}(oldsymbol{v},oldsymbol{k}) = \min egin{cases} \min_{oldsymbol{u} \in oldsymbol{V}} oldsymbol{d}(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + \ell(oldsymbol{u},oldsymbol{v}). \ oldsymbol{d}(oldsymbol{v},oldsymbol{k}-oldsymbol{1}) \end{cases}$$

Base case: d(s,0) = 0 and $d(v,0) = \infty$ for all $v \neq s$.

round	S	а	b	С	d	е	f

round	S	a	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
							•

round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞

round	s	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9

round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7

round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7

round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
5	0	-1	2	3	1	9	7

round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
5	0	-1	2	3	1	9	7
6	0	-2	2	3	1	9	7

round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
5	0	-1	2	3	1	9	7
6	0	-2	2	3	1	9	7

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.2.3

```
for each u \in V do
     d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
     for each v \in V do
           d(v,k) \leftarrow d(v,k-1)
           for each edge (u, v) \in in(v) do
                d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}
for each v \in V do
     \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

```
Running time: O(mn) Space: O(m+n^2) Space can be reduced to O(m+n).
```

```
for each u \in V do
     d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
     for each v \in V do
           d(v,k) \leftarrow d(v,k-1)
           for each edge (u, v) \in in(v) do
                d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}
for each v \in V do
     \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

```
Running time: O(mn) Space: O(m + n^2) Space can be reduced to O(m + n).
```

```
for each u \in V do
     d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
     for each v \in V do
           d(v,k) \leftarrow d(v,k-1)
           for each edge (u, v) \in in(v) do
                d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}
for each v \in V do
     \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

```
Running time: O(mn) Space: O(m + n^2) Space can be reduced to O(m + n).
```

```
for each u \in V do
     d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
     for each v \in V do
           d(v,k) \leftarrow d(v,k-1)
           for each edge (u, v) \in in(v) do
                d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}
for each v \in V do
     \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

```
Running time: O(mn) Space: O(m + n^2) Space can be reduced to O(m + n).
```

```
for each u \in V do
      d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
       for each v \in V do
              d(v,k) \leftarrow d(v,k-1)
              for each edge (u, v) \in in(v) do
                     d(\mathbf{v}, \mathbf{k}) = \min\{d(\mathbf{v}, \mathbf{k}), d(\mathbf{u}, \mathbf{k} - 1) + \ell(\mathbf{u}, \mathbf{v})\}\
for each v \in V do
       \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

```
Running time: O(mn) Space: O(m + n^2) Space can be reduced to O(m + n).
```

```
for each u \in V do
      d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n - 1 do
       for each v \in V do
              d(v,k) \leftarrow d(v,k-1)
              for each edge (u, v) \in in(v) do
                     d(\mathbf{v}, \mathbf{k}) = \min\{d(\mathbf{v}, \mathbf{k}), d(\mathbf{u}, \mathbf{k} - 1) + \ell(\mathbf{u}, \mathbf{v})\}\
for each v \in V do
       \operatorname{dist}(s, v) \leftarrow d(v, n-1)
```

```
Running time: O(mn) Space: O(m + n^2) Space can be reduced to O(m + n).
```

Bellman-Ford Algorithm: Cleaner version

```
for each u \in V do
    d(u) \leftarrow \infty
d(s) \leftarrow 0
for k = 1 to n - 1 do
      for each v \in V do
            for each edge (u, v) \in in(v) do
                   d(v) = \min\{d(v), d(u) + \ell(u, v)\}\
for each v \in V do
            \operatorname{dist}(s, \mathbf{v}) \leftarrow \mathbf{d}(\mathbf{v})
```

Running time: O(mn) Space: O(m+n)

Exercise: Argue that this achieves same results as algorithm on previous slide.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.2.3.1

Correctness of the Bellman-Ford Algorithm

Bellman-Ford Algorithm: Modified for analysis

```
for each u \in V do
     d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k=1 to n
      for each v \in V do
           d(v,k) \leftarrow d(v,k-1)
           for each edge (u, v) \in in(v) do
                 d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}
for each v \in V do
     \operatorname{dist}(s, \mathbf{v}) \leftarrow d(\mathbf{v}, n-1)
```

Walks computed correctly

Lemma 18.3.

For each \mathbf{v} , $\mathbf{d}(\mathbf{v}, \mathbf{k})$ is the length of a shortest walk from \mathbf{s} to \mathbf{v} with \mathbf{at} most \mathbf{k} hops.

Proof.

Standard induction (left as exercise).

Lemma 18.4.

If **G** does not has a negative length cycle reachable from $\mathbf{s} \implies \forall \mathbf{v}$: $\mathbf{d}(\mathbf{v}, \mathbf{n}) = \mathbf{d}(\mathbf{v}, \mathbf{n} - \mathbf{1})$.

Also, d(v, n - 1) is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most n-1 edges.

- \implies Len shortest walk from s to v with at most n-1 edges
- = Len shortest walk from \mathbf{s} to \mathbf{v}
- = Len shortest **path** from s to v.

By Lemma 18.3 : d(v, n) = d(v, n - 1) = dist(s, v), for all v.

Lemma 18.4.

If **G** does not has a negative length cycle reachable from $\mathbf{s} \implies \forall \mathbf{v}$: $\mathbf{d}(\mathbf{v}, \mathbf{n}) = \mathbf{d}(\mathbf{v}, \mathbf{n} - \mathbf{1})$.

Also, d(v, n - 1) is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most n-1 edges.

- \implies Len shortest walk from s to v with at most n-1 edges
- = Len shortest walk from \mathbf{s} to \mathbf{v}
- = Len shortest **path** from s to v.

By Lemma 18.3 : d(v, n) = d(v, n - 1) = dist(s, v), for all v.

Lemma 18.4.

If **G** does not has a negative length cycle reachable from $\mathbf{s} \implies \forall \mathbf{v}$: $\mathbf{d}(\mathbf{v}, \mathbf{n}) = \mathbf{d}(\mathbf{v}, \mathbf{n} - \mathbf{1})$.

Also, d(v, n - 1) is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most n-1 edges.

- \implies Len shortest walk from **s** to **v** with at most n-1 edges
- = Len shortest walk from \mathbf{s} to \mathbf{v}
- = Len shortest **path** from s to v.

By Lemma 18.3 : d(v, n) = d(v, n - 1) = dist(s, v), for all v.

Lemma 18.4.

If **G** does not has a negative length cycle reachable from $s \implies \forall v$: d(v, n) = d(v, n - 1).

Also, d(v, n - 1) is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most n-1 edges.

- \implies Len shortest walk from **s** to **v** with at most n-1 edges
- = Len shortest walk from \mathbf{s} to \mathbf{v}
- = Len shortest **path** from s to v.
- By Lemma 18.3 : d(v, n) = d(v, n 1) = dist(s, v), for all v.

Lemma 18.4.

If **G** does not has a negative length cycle reachable from $\mathbf{s} \implies \forall \mathbf{v}$: $\mathbf{d}(\mathbf{v}, \mathbf{n}) = \mathbf{d}(\mathbf{v}, \mathbf{n} - \mathbf{1})$.

Also, d(v, n - 1) is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most n-1 edges.

- \implies Len shortest walk from **s** to **v** with at most n-1 edges
- = Len shortest walk from \mathbf{s} to \mathbf{v}
- = Len shortest **path** from s to v.

By Lemma 18.3 : d(v, n) = d(v, n - 1) = dist(s, v), for all v.

Lemma 18.4.

If **G** does not has a negative length cycle reachable from $s \implies \forall v$: d(v, n) = d(v, n - 1).

Also, d(v, n - 1) is the length of the shortest path between s and v.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).

A path has at most n-1 edges. \implies Len shortest walk from s to v with at most n-1 edges

- = Len shortest walk from s to v
- = Len shortest **path** from s to v.

By **Lemma 18.3**: d(v, n) = d(v, n - 1) = dist(s, v), for all v.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.2.4

Bellman-Ford: Detecting negative cycles

Correctness: detecting negative length cycle

Lemma 18.5.

Suppose **G** has a negative cycle **C** reachable from **s**. Then there is some node $\mathbf{v} \in \mathbf{C}$ such that $\mathbf{d}(\mathbf{v}, \mathbf{n}) < \mathbf{d}(\mathbf{v}, \mathbf{n} - \mathbf{1})$.

Proof

```
Suppose not. Let {\it C}={\it v}_1 \rightarrow {\it v}_2 \rightarrow \ldots \rightarrow {\it v}_h \rightarrow {\it v}_1 be negative length cycle reachable from {\it s}. {\it d}({\it v}_i, {\it n}-1) is finite for 1 \leq i \leq h since {\it C} is reachable from {\it s}. By assumption {\it d}({\it v}, {\it n}) \geq {\it d}({\it v}, {\it n}-1) for all {\it v} \in {\it C}; implies no change in {\it n}th iteration; {\it d}({\it v}_i, {\it n}-1) = {\it d}({\it v}_i, {\it n}) for 1 \leq i \leq h. This means {\it d}({\it v}_i, {\it n}-1) \leq {\it d}({\it v}_{i-1}, {\it n}-1) + \ell({\it v}_{i-1}, {\it v}_i) for 2 \leq i \leq h and {\it d}({\it v}_1, {\it n}-1) \leq {\it d}({\it v}_n, {\it n}-1) + \ell({\it v}_n, {\it v}_1). Adding up all these inequalities results in the inequality 0 \leq \ell({\it C}) which contradicts the assumption that \ell({\it C}) < 0.
```

Correctness: detecting negative length cycle

Lemma 18.5.

Suppose **G** has a negative cycle **C** reachable from **s**. Then there is some node $\mathbf{v} \in \mathbf{C}$ such that $\mathbf{d}(\mathbf{v}, \mathbf{n}) < \mathbf{d}(\mathbf{v}, \mathbf{n} - \mathbf{1})$.

Proof.

Suppose not. Let ${\it C}={\it v}_1 \to {\it v}_2 \to \ldots \to {\it v}_h \to {\it v}_1$ be negative length cycle reachable from ${\it s}.$ ${\it d}({\it v}_i, {\it n}-1)$ is finite for $1 \le i \le h$ since ${\it C}$ is reachable from ${\it s}.$ By assumption ${\it d}({\it v}, {\it n}) \ge {\it d}({\it v}, {\it n}-1)$ for all ${\it v} \in {\it C}$; implies no change in ${\it n}$ th iteration; ${\it d}({\it v}_i, {\it n}-1) = {\it d}({\it v}_i, {\it n})$ for $1 \le i \le h$. This means ${\it d}({\it v}_i, {\it n}-1) \le {\it d}({\it v}_{i-1}, {\it n}-1) + \ell({\it v}_{i-1}, {\it v}_i)$ for $2 \le i \le h$ and ${\it d}({\it v}_1, {\it n}-1) \le {\it d}({\it v}_n, {\it n}-1) + \ell({\it v}_n, {\it v}_1)$. Adding up all these inequalities results in the inequality $0 \le \ell({\it C})$ which contradicts the assumption that $\ell({\it C}) < 0$.

$$egin{aligned} d(extbf{v}_1, extbf{n}) & \leq d(extbf{v}_0, extbf{n}-1) + \ell(extbf{v}_0, extbf{v}_1) \ d(extbf{v}_2, extbf{n}) & \leq d(extbf{v}_1, extbf{n}-1) + \ell(extbf{v}_1, extbf{v}_2) \ & \cdots \ d(extbf{v}_i, extbf{n}) & \leq d(extbf{v}_{i-1}, extbf{n}-1) + \ell(extbf{v}_{i-1}, extbf{v}_i) \ & \cdots \ d(extbf{v}_k, extbf{n}) & \leq d(extbf{v}_{k-1}, extbf{n}-1) + \ell(extbf{v}_{k-1}, extbf{v}_k) \ d(extbf{v}_0, extbf{n}) & \leq d(extbf{v}_k, extbf{n}-1) + \ell(extbf{v}_k, extbf{v}_0) \end{aligned}$$

$$egin{aligned} d(extbf{v}_1, extbf{n}) & \leq d(extbf{v}_0, extbf{n}) + \ell(extbf{v}_0, extbf{v}_1) \ d(extbf{v}_2, extbf{n}) & \leq d(extbf{v}_1, extbf{n}) + \ell(extbf{v}_1, extbf{v}_2) \ & \cdots \ d(extbf{v}_i, extbf{n}) & \leq d(extbf{v}_{i-1}, extbf{n}) + \ell(extbf{v}_{i-1}, extbf{v}_i) \ & \cdots \ d(extbf{v}_k, extbf{n}) & \leq d(extbf{v}_{k-1}, extbf{n}) + \ell(extbf{v}_{k-1}, extbf{v}_k) \ d(extbf{v}_0, extbf{n}) & \leq d(extbf{v}_k, extbf{n}) + \ell(extbf{v}_k, extbf{v}_0) \end{aligned}$$

$$d(v_1, n) \leq d(v_0, n) + \ell(v_0, v_1) \ d(v_2, n) \leq d(v_1, n) + \ell(v_1, v_2) \ \cdots \ d(v_i, n) \leq d(v_{i-1}, n) + \ell(v_{i-1}, v_i) \ \cdots \ d(v_k, n) \leq d(v_{k-1}, n) + \ell(v_{k-1}, v_k) \ d(v_0, n) \leq d(v_k, n) + \ell(v_k, v_0)$$

$$\sum_{i=0}^{k} d(v_{i}, n) \leq \sum_{i=0}^{k} d(v_{i}, n) + \sum_{i=1}^{k} \ell(v_{i-1}, v_{i}) + \ell(v_{k}, v_{0})$$

$$\sum_{i=0}^{k} d(\mathbf{v}_{i}, \mathbf{n}) \leq \sum_{i=0}^{k} d(\mathbf{v}_{i}, \mathbf{n}) + \sum_{i=1}^{k} \ell(\mathbf{v}_{i-1}, \mathbf{v}_{i}) + \ell(\mathbf{v}_{k}, \mathbf{v}_{0})$$

$$0 \leq \sum_{i=1}^k \ell(v_{i-1}, v_i) + \ell(v_k, v_0).$$

$$\sum_{i=0}^{k} d(\mathbf{v}_{i}, \mathbf{n}) \leq \sum_{i=0}^{k} d(\mathbf{v}_{i}, \mathbf{n}) + \sum_{i=1}^{k} \ell(\mathbf{v}_{i-1}, \mathbf{v}_{i}) + \ell(\mathbf{v}_{k}, \mathbf{v}_{0})$$

$$0 \leq \sum_{i=1}^k \ell(\mathbf{v}_{i-1}, \mathbf{v}_i) + \ell(\mathbf{v}_k, \mathbf{v}_0) = \operatorname{len}(\mathbf{C}).$$

$$\sum_{i=0}^{k} d(\mathbf{v}_{i}, \mathbf{n}) \leq \sum_{i=0}^{k} d(\mathbf{v}_{i}, \mathbf{n}) + \sum_{i=1}^{k} \ell(\mathbf{v}_{i-1}, \mathbf{v}_{i}) + \ell(\mathbf{v}_{k}, \mathbf{v}_{0})$$

$$0 \leq \sum_{i=1}^k \ell(\mathbf{v}_{i-1}, \mathbf{v}_i) + \ell(\mathbf{v}_k, \mathbf{v}_0) = \operatorname{len}(\mathbf{C}).$$

C is a not a negative cycle. Contradiction.

Negative cycles can not hide

Lemma 18.4 restated

If **G** does not has a negative length cycle reachable from $s \implies \forall v$: d(v, n) = d(v, n - 1).

Also, d(v, n-1) is the length of the shortest path between s and v.

Lemma 18.4 and **Lemma 18.5** put together are the following:

Lemma 18.6.

G has a negative length cycle reachable from $s \iff$ there is some node v such that d(v,n) < d(v,n-1).

Bellman-Ford: Negative Cycle Detection

The official final version

```
for each u \in V do
     d(u) \leftarrow \infty
d(s) \leftarrow 0
for k=1 to n-1 do
      for each v \in V do
            for each edge (u, v) \in in(v) do
                  d(\mathbf{v}) = \min\{d(\mathbf{v}), d(\mathbf{u}) + \ell(\mathbf{u}, \mathbf{v})\}\
(* One more iteration to check if distances change *)
for each v \in V do
      for each edge (u, v) \in in(v) do
            if (d(v) > d(u) + \ell(u, v))
                   Output ``Negative Cvcle''
for each v \in V do
      \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v}) \leftarrow \boldsymbol{d}(\boldsymbol{v})
```

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.2.5

Variants on Bellman-Ford

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

- For each v the d(v) can only get smaller as algorithm proceeds.
- If d(v) becomes smaller it is because we found a vertex u such that $d(v) > d(u) + \ell(u, v)$ and we update $d(v) = d(u) + \ell(u, v)$. That is, we found a shorter path to v through u.
- For each v have a prev(v) pointer and update it to point to u if v finds a shorter path via u.
- At end of algorithm prev(v) pointers give a shortest path tree oriented towards the source s.

Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

- Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific vertex s. There may negative cycles not reachable from s.
- ② Run Bellman-Ford |V| times, once from each node u?

Negative Cycle Detection

Negative Cycle Detection

Given directed graph ${\it G}$ with arbitrary edge lengths, does it have a negative length cycle?

- Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific vertex s. There may negative cycles not reachable from s.
- ② Run Bellman-Ford |V| times, once from each node u?

Negative Cycle Detection

- lacktriangledown Add a new node s' and connect it to all nodes of G with zero length edges. Bellman-Ford from s' will fill find a negative length cycle if there is one. Exercise: why does this work?
- Negative cycle detection can be done with one Bellman-Ford invocation.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.3Shortest Paths in DAGs

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAG:

- No cycles and hence no negative length cycles! Hence can find shortest paths even for negative length edges
- Can order nodes using topological sort

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

- No cycles and hence no negative length cycles! Hence can find shortest paths even for negative length edges
- Can order nodes using topological sort

Algorithm for DAGs

- **1** Want to find shortest paths from s. Ignore nodes not reachable from s.
- 2 Let $s = v_1, v_2, v_{i+1}, \dots, v_n$ be a topological sort of **G**

Observation

- \bigcirc shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n
- ② can find shortest paths in topological sort order.

Algorithm for DAGs

- **1** Want to find shortest paths from s. Ignore nodes not reachable from s.
- 2 Let $s = v_1, v_2, v_{i+1}, \dots, v_n$ be a topological sort of **G**

Observation:

- \bigcirc shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n
- can find shortest paths in topological sort order.

Algorithm for DAGs

```
\begin{aligned} &\text{for } i=1 \text{ to } n \text{ do} \\ &\quad d(s,v_i)=\infty \\ &d(s,s)=0 \end{aligned} &\text{for } i=1 \text{ to } n-1 \text{ do} \\ &\text{for each edge } (v_i,v_j) \text{ in } \mathrm{Adj}(v_i) \text{ do} \\ &\quad d(s,v_j)=\min\{d(s,v_j),d(s,v_i)+\ell(v_i,v_j)\} \end{aligned} &\text{return } d(s,\cdot) \text{ values computed}
```

Correctness: induction on *i* and observation in previous slide.

Running time: O(m + n) time algorithm! Works for negative edge lengths and hence can find <u>longest</u> paths in a DAG.

Bellman-Ford and DAGs

Bellman-Ford is based on the following principles:

- ullet The shortest walk length from ullet to ullet with at most ullet hops can be computed via dynamic programming
- G has a negative length cycle reachable from s iff there is a node v such that shortest walk length reduces after n hops.

We can find hop-constrained shortest paths via graph reduction.

Given G = (V, E) with edge lengths $\ell(e)$ and integer k construction new layered graph G' = (V', E') as follows.

- $V' = V \times \{0, 1, 2, \ldots, k\}$.
- $E' = \{((u,i),(v,i+1) \mid (u,v) \in E, 0 \le i < k\},\ \ell((u,i),(v,i+1)) = \ell(u,v)$

Lemma 18.1.

Shortest path distance from $(\mathbf{u}, \mathbf{0})$ to (\mathbf{v}, \mathbf{k}) in \mathbf{G}' is equal to the shortest walk from \mathbf{u} to \mathbf{v} in \mathbf{G} with exactly \mathbf{k} edges.

Layered DAG: Figure

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.4

All Pairs Shortest Paths

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.4.1

Problem definition and what we can already do

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex

- Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- ② Arbitrary edge lengths: $O(n^2m)$. $\Theta(n^4)$ if $m = \Omega(n^2)$.

Can we do better?

All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

- **1** Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- ② Arbitrary edge lengths: $O(n^2m)$. $\Theta(n^4)$ if $m = \Omega(n^2)$.

Can we do better?

All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

- **1** Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- **2** Arbitrary edge lengths: $O(n^2m)$. $\Theta(n^4)$ if $m = \Omega(n^2)$.

Can we do better?

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.4.2

All Pairs Shortest Paths: A recursive solution

- **1** Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- **2** dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an <u>intermediate node</u> is at most k (could be $-\infty$ if there is a negative length cycle).

$$dist(i, j, 0) = 100$$

 $dist(i, j, 1) = 9$
 $dist(i, j, 2) = 8$
 $dist(i, j, 3) = 5$

- **1** Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- ② dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an intermediate node is at most k (could be $-\infty$ if there is a negative length cycle).

$$dist(i, j, 0) = 100$$

 $dist(i, j, 1) = 9$
 $dist(i, j, 2) = 8$
 $dist(i, j, 3) = 5$

- **1** Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- **2** dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an <u>intermediate node</u> is at most k (could be $-\infty$ if there is a negative length cycle).

$$dist(i, j, 0) = 100$$

 $dist(i, j, 1) = 9$
 $dist(i, j, 2) = 8$
 $dist(i, j, 3) = 5$

- **1** Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- ② dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an intermediate node is at most k (could be $-\infty$ if there is a negative length cycle).

$$dist(i, j, 0) = 100$$

 $dist(i, j, 1) = 9$
 $dist(i, j, 2) = 8$
 $dist(i, j, 3) = 5$

- **1** Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- ② dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an intermediate node is at most k (could be $-\infty$ if there is a negative length cycle).

$$dist(i, j, 0) = 100$$

 $dist(i, j, 1) = 9$
 $dist(i, j, 2) = 8$
 $dist(i, j, 3) = 5$

For the following graph, dist(i, j, 2) is...

$$extit{dist}(i,j,k) = \min egin{cases} extit{dist}(i,j,k-1) \ extit{dist}(i,k,k-1) + extit{dist}(k,j,k-1) \end{cases}$$

Base case: $dist(i, j, 0) = \ell(i, j)$ if $(i, j) \in E$, otherwise ∞ Correctness: If $i \to j$ shortest walk goes through k then k occurs only once on the path — otherwise there is a negative length cycle.

If i can reach k and k can reach j and dist(k, k, k - 1) < 0 then G has a negative length cycle containing k and $dist(i, j, k) = -\infty$.

Recursion below is valid only if $dist(k, k, k - 1) \ge 0$. We can detect this during the algorithm or wait till the end.

$$extit{dist}(i,j,k) = \min egin{cases} extit{dist}(i,j,k-1) \ extit{dist}(i,k,k-1) + extit{dist}(k,j,k-1) \end{cases}$$

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.4.3

Floyd-Warshall algorithm

Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

$$egin{aligned} oldsymbol{d(i,j,k)} &= \min egin{cases} oldsymbol{d(i,j,k-1)} \ oldsymbol{d(i,k,k-1)} + oldsymbol{d(k,j,k-1)} \end{cases} \end{aligned}$$

```
for i = 1 to n do
     for i = 1 to n do
           d(i, j, 0) = \ell(i, j)
 (* \ell(i,j) = \infty \text{ if } (i,j) \notin E, 0 \text{ if } i = i *)
for k = 1 to n do
     for i = 1 to n do
           for j = 1 to n do
                d(i,j,k) = \min egin{cases} d(i,j,k-1), \\ d(i,k,k-1) + d(k,j,k-1) \end{cases}
for i = 1 to n do
     if (dist(i, i, n) < 0) then
           Output \exists negative cycle in G
```

Running Time: $\Theta(\mathbf{n}^3)$. Space: $\Theta(\mathbf{n}^3)$.

Correctness:
via induction and recursive definition

Flovd-Warshall Algorithm

for All-Pairs Shortest Paths

 $d(i,j,k) = \min \left\{ egin{aligned} d(i,j,k-1) \ d(i,k,k-1) + d(k,j,k-1) \end{aligned}
ight.$

```
for i = 1 to n do
     for i = 1 to n do
           d(i, i, 0) = \ell(i, i)
 (* \ell(i,j) = \infty \text{ if } (i,j) \notin E, 0 \text{ if } i = i *)
for k = 1 to n do
     for i = 1 to n do
           for j = 1 to n do
                d(i,j,k) = \min egin{cases} d(i,j,k-1), \\ d(i,k,k-1) + d(k,j,k-1) \end{cases}
for i = 1 to n do
     if (dist(i, i, n) < 0) then
           Output \exists negative cycle in G
```

Running Time: $\Theta(n^3)$.

Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

$$egin{aligned} oldsymbol{d(i,j,k)} &= \min egin{cases} oldsymbol{d(i,j,k-1)} \ oldsymbol{d(i,k,k-1)} + oldsymbol{d(k,j,k-1)} \end{cases} \end{aligned}$$

```
for i = 1 to n do
     for i = 1 to n do
           d(i, i, 0) = \ell(i, i)
 (* \ell(i,j) = \infty \text{ if } (i,j) \notin E, 0 \text{ if } i = i *)
for k = 1 to n do
     for i = 1 to n do
           for j = 1 to n do
                d(i,j,k) = \min egin{cases} d(i,j,k-1), \ d(i,k,k-1) + d(k,j,k-1) \end{cases}
for i = 1 to n do
     if (dist(i, i, n) < 0) then
           Output \exists negative cycle in G
```

Space: $\Theta(n^3)$.

Running Time: $\Theta(n^3)$.

Correctness:
via induction and recursive definition

Floyd-Warshall Algorithm

1101111

for All-Pairs Shortest Paths

$$egin{aligned} oldsymbol{d}(oldsymbol{i},oldsymbol{j},oldsymbol{k}) = \min egin{cases} oldsymbol{d}(oldsymbol{i},oldsymbol{k},oldsymbol{k}-1) \ oldsymbol{d}(oldsymbol{i},oldsymbol{k},oldsymbol{k}-1) + oldsymbol{d}(oldsymbol{k},oldsymbol{j},oldsymbol{k}-1) \end{cases}$$

```
for i = 1 to n do
     for i = 1 to n do
          d(i,j,0) = \ell(i,j)
 (* \ell(i,j) = \infty \text{ if } (i,j) \notin E, 0 \text{ if } i = i *)
for k = 1 to n do
     for i = 1 to n do
          for j = 1 to n do
               d(i,j,k) = \min egin{cases} d(i,j,k-1), \ d(i,k,k-1) + d(k,j,k-1) \end{cases}
for i = 1 to n do
     if (dist(i, i, n) < 0) then
          Output \exists negative cycle in G
```

Running Time: $\Theta(\mathbf{n}^3)$. Space: $\Theta(\mathbf{n}^3)$.

Correctness: via induction and recursive definition

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a n × n array Next that stores the next vertex on shortest path for each pair of vertices
- With array Next, for any pair of given vertices i, j can compute a shortest path in O(n) time.

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a $n \times n$ array Next that stores the next vertex on shortest path for each pair of vertices
- With array Next, for any pair of given vertices i, j can compute a shortest path in O(n) time.

Floyd-Warshall Algorithm

Finding the Paths

```
for i = 1 to n do
    for i = 1 to n do
         d(i, j, 0) = \ell(i, j)
(* \ell(i,j) = \infty \text{ if } (i,j) \text{ not edge, } 0 \text{ if } i = j *)
         Next(i, i) = -1
for k = 1 to n do
    for i = 1 to n do
         for i = 1 to n do
              if (d(i, j, k-1) > d(i, k, k-1) + d(k, j, k-1)) then
                   d(i, i, k) = d(i, k, k-1) + d(k, i, k-1)
                   Next(i, j) = k
for i = 1 to n do
    if (d(i,i,n)<0) then
         Output that there is a negative length cycle in G
```

Exercise: Given **Next** array and any two vertices i, j describe an O(n) algorithm to find a i-i shortest path.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.5

Summary of shortest path algorithms

Summary of results on shortest paths

Single source		
No negative edges	Dijkstra	$O(n \log n + m)$
Edge lengths can be negative	Bellman Ford	O (nm)

All Pairs Shortest Paths

No negative edges	n * Dijkstra	$O(n^2 \log n + nm)$
No negative cycles	n * Bellman Ford	$O(n^2m) = O(n^4)$
No negative cycles (*)	BF + n * Dijkstra	$O(nm + n^2 \log n)$
No negative cycles	Floyd-Warshall	$O(n^3)$
Unweighted	Matrix multiplication	$O(n^{2.38}), O(n^{2.58})$

Summary of results on shortest paths

More details

(*): The algorithm for the case that there are no negative cycles, and doing all shortest paths, works by computing a potential function using **Bellman-Ford** and then doing **Dijkstra**. It is mentioned for the sake of completeness, but it outside the scope of the class.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.6

DFA to Regular Expression

Back to Regular Languages

We saw the following two theorems previously.

Theorem 18.1.

For every NFA N over a finite alphabet Σ there is DFA M such that L(M) = L(N).

Theorem 18.2.

For every regular expression r over finite alphabet Σ there is a NFA N such that L(N) = L(r).

We claimed the following theorem which would prove equivalence of NFAs, DFAs and regular expressions.

Theorem 18.3

For every DFA M over a finite alphabet Σ there is a regular expression r such that L(M) = L(r).

Back to Regular Languages

We saw the following two theorems previously.

Theorem 18.1.

For every NFA N over a finite alphabet Σ there is DFA M such that L(M) = L(N).

Theorem 18.2.

For every regular expression r over finite alphabet Σ there is a NFA N such that L(N) = L(r).

We claimed the following theorem which would prove equivalence of NFAs, DFAs and regular expressions.

Theorem 18.3.

For every DFA M over a finite alphabet Σ there is a regular expression r such that L(M) = L(r).

DFA to Regular Expression

Given DFA $M = (Q, \Sigma, \delta, q_1, F)$ want to construct an equivalent regular expression r.

Idea:

- Number states of DFA: $Q = \{q_1, \ldots, q_n\}$ where |Q| = n.
- Define $L_{i,j} = \{ w \mid \delta(q_i, w) = q_j \}$. Note $L_{i,j}$ is regular. Why?
- $\bullet \ L(M) = \cup_{q_i \in F} L_{1,i}.$
- Obtain regular expression $r_{i,j}$ for $L_{i,j}$.
- Then $r = \sum_{q_i \in F} r_{1,i}$ is regular expression for L(M) here the summation is the or operator.

Note: Using q_1 for start state is intentional to help in the notation for the recursion.

A recursive expression for $L_{i,j}$

Define $L_{i,j}^k$ be set of strings w in $L_{i,j}$ such that the highest index state visited by M on walk from q_i to q_j (not counting end points i and j) on input w is at most k.

Claim:
$$L_{i,i}^{0} = \{a \in \Sigma \mid \delta(q_{i}, a) = q_{i}\}^{*}$$

$$L_{i,j}^{0} = L_{i,i}^{0} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} L_{j,j}^{0} \qquad \text{if } i \neq j$$

$$L_{i,j}^{k} = L_{i,j}^{k-1} \cup \left(L_{i,k}^{k-1} \cdot L_{k,k}^{k-1} \cdot L_{k,j}^{k-1}\right) \qquad i \neq j$$

$$L_{i,i}^{k} = \left(L_{i,i}^{k-1} \cup L_{i,k}^{k-1} \cdot L_{k,k}^{k-1} \cdot L_{k,i}^{k-1}\right)^{*}$$

$$L_{i,j} = L_{i,j}^{n}.$$

A recursive expression for $L_{i,i}$

$$L_{i,i}^{0} = \{a \in \Sigma \mid \delta(q_{i}, a) = q_{i}\}^{*}$$
 $L_{i,j}^{0} = L_{i,i}^{0} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} L_{j,j}^{0}$ if $i \neq j$
 $L_{i,j}^{k} = L_{i,j}^{k-1} \cup \left(L_{i,k}^{k-1} \cdot L_{k,k}^{k-1} \cdot L_{k,j}^{k-1}\right)$ $i \neq j$
 $L_{i,i}^{k} = \left(L_{i,i}^{k-1} \cup L_{i,k}^{k-1} \cdot L_{k,k}^{k-1} \cdot L_{k,i}^{k-1}\right)^{*}$
 $L_{i,j} = L_{i,j}^{n}$.

Proof: by picture

A recursive expression for $L_{i,j}$

Claim:
$$L_{i,i}^{0} = \{a \in \Sigma \mid \delta(q_{i}, a) = q_{i}\}^{*}$$

$$L_{i,j}^{0} = L_{i,i}^{0} \{a \in \Sigma \mid \delta(q_{i}, a) = q_{j}\} L_{j,j}^{0} \qquad \text{if } i \neq j$$

$$L_{i,j}^{k} = L_{i,j}^{k-1} \cup \left(L_{i,k}^{k-1} \cdot L_{k,k}^{k-1} \cdot L_{k,j}^{k-1}\right) \qquad i \neq j$$

$$L_{i,i}^{k} = \left(L_{i,i}^{k-1} \cup L_{i,k}^{k-1} \cdot L_{k,k}^{k-1} \cdot L_{k,i}^{k-1}\right)^{*}$$

$$L_{i,i} = L_{i,i}^{n}.$$

The desired language is

$$L(M) = \cup_{q_i \in F} L_{1,i} = \cup_{q_i \in F} L_{1,i}^n$$

A regular expression for L(M)

$$r_{i,i}^{0} = \left(\sum_{a \in \Sigma: \delta(q_{i}, a) = q_{i}} a\right)^{*}$$

$$r_{i,j}^{0} = r_{i,i}^{0} \left(\sum_{a \in \Sigma: \delta(q_{i}, a) = q_{j}} a\right) r_{j,j}^{0} \qquad \text{if } i \neq j$$

$$r_{i,j}^{k} = r_{i,j}^{k-1} + r_{i,k}^{k-1} r_{k,k}^{k-1} r_{k,j}^{k-1} \qquad i \neq j$$

$$r_{i,i}^{k} = \left(r_{i,i}^{k-1} + r_{i,k}^{k-1} \cdot r_{k,k}^{k-1} \cdot r_{k,i}^{k-1}\right)^{*}$$

$$r_{i,j}^{n} = r_{i,j}^{n}.$$

The desired regular expression is: reg-expression $(M) = \sum_{q_i \in F} r_{1,i} = \sum_{q_i \in F} r_{1,i}^n$.

$$extbf{\emph{r}}_{1,1}^0 = extbf{\emph{r}}_{2,2}^0 = extbf{\emph{b}}^*$$

$$extbf{\emph{r}}_{1,2}^0 = extbf{\emph{r}}_{2,1}^0 = extbf{\emph{b}}^* extbf{\emph{a}} extbf{\emph{b}}^*$$

$$\begin{array}{l} \textbf{r}_{1,1}^1 = (\textbf{r}_{1,1}^0 + \textbf{r}_{1,1}^0 \textbf{r}_{1,1}^0 \textbf{r}_{1,1}^0 \textbf{r}_{1,1}^0)^* = \textbf{b}^* \\ \textbf{r}_{2,2}^1 = (\textbf{r}_{2,2}^0 + \textbf{r}_{2,1}^0 \textbf{r}_{1,1}^0 \textbf{r}_{1,2}^0)^* = (\textbf{b}^* + \textbf{b}^* \textbf{a} \textbf{b}^* \textbf{b}^* \textbf{b}^* \textbf{a} \textbf{b}^*)^* = (\textbf{b}^* + \textbf{a} \textbf{b}^* \textbf{a})^* \\ \textbf{r}_{1,2}^1 = \textbf{r}_{1,2}^0 + \textbf{r}_{1,1}^0 \textbf{r}_{1,1}^0 \textbf{r}_{1,2}^0 = \textbf{b}^* \textbf{a} \textbf{b}^* + \textbf{b}^* \textbf{b}^* \textbf{a} \textbf{b}^* = \textbf{b}^* \textbf{a} \textbf{b}^*. \\ \textbf{r}_{2,1}^1 = \textbf{r}_{1,2}^0 + \textbf{r}_{2,1}^0 \textbf{r}_{1,1}^0 \textbf{r}_{1,1}^0 = \textbf{b}^* \textbf{a} \textbf{b}^* \\ \textbf{r}_{1,1}^2 = (\textbf{r}_{1,1}^1 + \textbf{r}_{1,2}^1 \textbf{r}_{2,2}^1 \textbf{r}_{2,1}^1)^* = \cdots \\ \textbf{r}_{2,2}^1 = \cdots \end{array}$$

$$extbf{\emph{r}}_{1,1}^0 = extbf{\emph{r}}_{2,2}^0 = extbf{\emph{b}}^*$$

$$extbf{\emph{r}}_{1,2}^0 = extbf{\emph{r}}_{2,1}^0 = extbf{\emph{b}}^* extbf{\emph{a}} extbf{\emph{b}}^*$$

$$\begin{split} & \mathbf{r}_{1,1}^{1} = (\mathbf{r}_{1,1}^{0} + \mathbf{r}_{1,1}^{0} \mathbf{r}_{1,1}^{0} \mathbf{r}_{1,1}^{0})^{*} = \mathbf{b}^{*} \\ & \mathbf{r}_{2,2}^{1} = (\mathbf{r}_{2,2}^{0} + \mathbf{r}_{2,1}^{0} \mathbf{r}_{1,1}^{0} \mathbf{r}_{1,2}^{0})^{*} = (\mathbf{b}^{*} + \mathbf{b}^{*} \mathbf{a} \mathbf{b}^{*} \mathbf{b}^{*} \mathbf{a} \mathbf{b}^{*})^{*} = (\mathbf{b}^{*} + \mathbf{a} \mathbf{b}^{*} \mathbf{a})^{*} \\ & \mathbf{r}_{1,2}^{1} = \mathbf{r}_{1,2}^{0} + \mathbf{r}_{1,1}^{0} \mathbf{r}_{1,1}^{0} \mathbf{r}_{1,2}^{0} = \mathbf{b}^{*} \mathbf{a} \mathbf{b}^{*} + \mathbf{b}^{*} \mathbf{b}^{*} \mathbf{a} \mathbf{b}^{*} = \mathbf{b}^{*} \mathbf{a} \mathbf{b}^{*} \\ & \mathbf{r}_{2,1}^{1} = \mathbf{r}_{1,2}^{0} + \mathbf{r}_{2,1}^{0} \mathbf{r}_{1,1}^{0} \mathbf{r}_{1,1}^{0} = \mathbf{b}^{*} \mathbf{a} \mathbf{b}^{*} \\ & \mathbf{r}_{1,1}^{2} = (\mathbf{r}_{1,1}^{1} + \mathbf{r}_{1,2}^{1} \mathbf{r}_{2,2}^{1} \mathbf{r}_{2,1}^{1})^{*} = \cdots \\ & \mathbf{r}_{2,2}^{1} = \cdots \end{split}$$

$${\it r}_{1,1}^0={\it r}_{2,2}^0={\it b}^* \qquad \qquad {\it r}_{1,2}^0={\it r}_{2,1}^0={\it b}^*{\it a}{\it b}^*$$

$$\begin{split} & \boldsymbol{r}_{1,1}^1 = (\boldsymbol{r}_{1,1}^0 + \boldsymbol{r}_{1,1}^0 \boldsymbol{r}_{1,1}^0 \boldsymbol{r}_{1,1}^0)^* = \boldsymbol{b}^* \\ & \boldsymbol{r}_{2,2}^1 = (\boldsymbol{r}_{2,2}^0 + \boldsymbol{r}_{2,1}^0 \boldsymbol{r}_{1,1}^0 \boldsymbol{r}_{1,2}^0)^* = (\boldsymbol{b}^* + \boldsymbol{b}^* \boldsymbol{a} \boldsymbol{b}^* \boldsymbol{b}^* \boldsymbol{a} \boldsymbol{b}^*)^* = (\boldsymbol{b}^* + \boldsymbol{a} \boldsymbol{b}^* \boldsymbol{a})^* \\ & \boldsymbol{r}_{1,2}^1 = \boldsymbol{r}_{1,2}^0 + \boldsymbol{r}_{1,1}^0 \boldsymbol{r}_{1,1}^0 \boldsymbol{r}_{1,2}^0 = \boldsymbol{b}^* \boldsymbol{a} \boldsymbol{b}^* + \boldsymbol{b}^* \boldsymbol{b}^* \boldsymbol{a} \boldsymbol{b}^* = \boldsymbol{b}^* \boldsymbol{a} \boldsymbol{b}^*. \\ & \boldsymbol{r}_{2,1}^1 = \boldsymbol{r}_{1,2}^0 + \boldsymbol{r}_{2,1}^0 \boldsymbol{r}_{1,1}^0 \boldsymbol{r}_{1,1}^0 = \boldsymbol{b}^* \boldsymbol{a} \boldsymbol{b}^* \\ & \boldsymbol{r}_{2,1}^1 = (\boldsymbol{r}_{1,1}^1 + \boldsymbol{r}_{1,2}^1 \boldsymbol{r}_{2,2}^1 \boldsymbol{r}_{2,1}^1)^* = \cdots \\ & \boldsymbol{r}_{2,2}^1 = \cdots \end{split}$$

$$extbf{\emph{r}}_{1,1}^0 = extbf{\emph{r}}_{2,2}^0 = extbf{\emph{b}}^* \hspace{1cm} extbf{\emph{r}}_{1,2}^0 = extbf{\emph{r}}_{2,1}^0 = extbf{\emph{b}}^* extbf{\emph{a}} extbf{\emph{b}}^*$$

$$\begin{split} & r_{1,1}^1 = (r_{1,1}^0 + r_{1,1}^0 r_{1,1}^0 r_{1,1}^0)^* = b^* \\ & r_{2,2}^1 = (r_{2,2}^0 + r_{2,1}^0 r_{1,1}^0 r_{1,2}^0)^* = (b^* + b^* a b^* b^* b^* a b^*)^* = (b^* + a b^* a)^* \\ & r_{1,2}^1 = r_{1,2}^0 + r_{1,1}^0 r_{1,1}^0 r_{1,2}^0 = b^* a b^* + b^* b^* a b^* = b^* a b^*. \\ & r_{2,1}^1 = r_{1,2}^0 + r_{2,1}^0 r_{1,1}^0 r_{1,1}^0 = b^* a b^* \\ & r_{1,1}^2 = (r_{1,1}^1 + r_{1,2}^1 r_{2,2}^1 r_{2,1}^1)^* = \cdots \\ & r_{2,2}^1 = \cdots \end{split}$$

$$extbf{\emph{r}}_{1,1}^0 = extbf{\emph{r}}_{2,2}^0 = extbf{\emph{b}}^*$$

$$extbf{\emph{r}}_{1,2}^0 = extbf{\emph{r}}_{2,1}^0 = extbf{\emph{b}}^* extbf{\emph{a}} extbf{\emph{b}}^*$$

$$\begin{split} & r_{1,1}^1 = (r_{1,1}^0 + r_{1,1}^0 r_{1,1}^0 r_{1,1}^0)^* = b^* \\ & r_{2,2}^1 = (r_{2,2}^0 + r_{2,1}^0 r_{1,1}^0 r_{1,2}^0)^* = (b^* + b^* a b^* b^* b^* a b^*)^* = (b^* + a b^* a)^* \\ & r_{1,2}^1 = r_{1,2}^0 + r_{1,1}^0 r_{1,1}^0 r_{1,2}^0 = b^* a b^* + b^* b^* a b^* = b^* a b^*. \\ & r_{2,1}^1 = r_{1,2}^0 + r_{2,1}^0 r_{1,1}^0 r_{1,1}^0 = b^* a b^* \\ & r_{1,1}^2 = (r_{1,1}^1 + r_{1,2}^1 r_{2,2}^1 r_{2,1}^1)^* = \cdots \\ & r_{2,2}^1 = \cdots \end{split}$$

$$extbf{\emph{r}}_{1,1}^0 = extbf{\emph{r}}_{2,2}^0 = extbf{\emph{b}}^*$$

$$egin{aligned} r_{1,1}^1 &= (r_{1,1}^0 + r_{1,1}^0 r_{1,1}^0 r_{1,1}^0)^* = b^* \ r_{2,2}^1 &= (r_{2,2}^0 + r_{2,1}^0 r_{1,1}^0 r_{1,2}^0)^* = (b^* + b^* a b^* b^* b^* a b^*)^* = (b^* + a b^* a)^* \ r_{1,2}^1 &= r_{1,2}^0 + r_{1,1}^0 r_{1,1}^0 r_{1,2}^0 = b^* a b^* + b^* b^* a b^* = b^* a b^*. \ r_{2,1}^1 &= r_{1,2}^0 + r_{2,1}^0 r_{1,1}^0 r_{1,1}^0 = b^* a b^* \ r_{1,1}^2 &= (r_{1,1}^1 + r_{1,2}^1 r_{2,2}^1 r_{2,1}^1)^* = \cdots \ r_{2,2}^1 &= \cdots \end{aligned}$$

$$extbf{\emph{r}}_{1,1}^0 = extbf{\emph{r}}_{2,2}^0 = extbf{\emph{b}}^*$$

$$extbf{ extit{r}}_{1,2}^0 = extbf{ extit{r}}_{2,1}^0 = extbf{ extit{b}}^* extbf{ extit{a}} extbf{ extit{b}}^*$$

$$\begin{split} & r_{1,1}^1 = (r_{1,1}^0 + r_{1,1}^0 r_{1,1}^0 r_{1,1}^0)^* = b^* \\ & r_{2,2}^1 = (r_{2,2}^0 + r_{2,1}^0 r_{1,1}^0 r_{1,2}^0)^* = (b^* + b^* a b^* b^* b^* a b^*)^* = (b^* + a b^* a)^* \\ & r_{1,2}^1 = r_{1,2}^0 + r_{1,1}^0 r_{1,1}^0 r_{1,2}^0 = b^* a b^* + b^* b^* a b^* = b^* a b^*. \\ & r_{2,1}^1 = r_{1,2}^0 + r_{2,1}^0 r_{1,1}^0 r_{1,1}^0 = b^* a b^* \\ & r_{1,1}^2 = (r_{1,1}^1 + r_{1,2}^1 r_{2,2}^1 r_{2,1}^1)^* = \cdots \\ & r_{2,2}^1 = \cdots \end{split}$$

Correctness

Similar to that of Floyd-Warshall algorithms for shortest paths via induction.

The length of the regular expression can be exponential in the size of the original DFA.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.7

Dynamic Programming: Postscript

Dynamic Programming: Postscript

 $Dynamic\ Programming = Smart\ Recursion + Memoization$

- How to come up with the recursion?
- ② How to recognize that dynamic programming may apply?

Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

- How to come up with the recursion?
- Output
 Output
 Output
 Description
 Description
 Output
 Description
 Description

Some Tips

- Problems where there is a <u>natural</u> linear ordering: sequences, paths, intervals, DAGs etc. Recursion based on ordering (left to right or right to left or topological sort) usually works.
- Problems involving trees: recursion based on subtrees.
- More generally:
 - Problem admits a natural recursive divide and conquer
 - If optimal solution for whole problem can be simply composed from optimal solution for each separate pieces then plain divide and conquer works directly
 - If optimal solution depends on all pieces then can apply dynamic programming if interface/interaction between pieces is <u>limited</u>. Augment recursion to not simply find an optimum solution but also an optimum solution for each possible way to interact with the other pieces.

- Longest Increasing Subsequence: break sequence in the middle say. What is the interaction between the two pieces in a solution?
- Sequence Alignment: break both sequences in two pieces each. What is the interaction between the two sets of pieces?
- Independent Set in a Tree: break tree at root into subtrees. What is the interaction between the subtrees?
- Independent Set in an graph: break graph into two graphs. What is the interaction? Very high!
- Mnapsack: Split items into two sets of half each. What is the interaction?