CS/ECE 374, Fall 2020

# DAGs, DFS, topological sorting, linear time algorithm for SCC

Lecture 16 Thursday, October 22, 2020

LATEXed: September 23, 2020 21:02

CS/ECE 374, Fall 2020

# 16.1

# Overview: Depth First Search and SCC

SCC

#### Overview

#### Topics:

- Structure of directed graphs
- DAGs: Directed acyclic graphs.
- Topological ordering.
- DFS pre/post number, and its properties.
- Linear time algorithm for SCCs.

# THE END

...

(for now)

CS/ECE 374, Fall 2020

# 16.2

# Directed Acyclic Graphs

CS/ECE 374, Fall 2020

## 16.2.1

# DAGs definition and basic properties

DAG

## Directed Acyclic Graphs

#### **Definition**

A directed graph G is a  $\frac{\text{directed}}{\text{acyclic graph}}$  (DAG) if there is no directed cycle in G.



### Is this a DAG?





#### Sources and Sinks



#### **Definition**

- **1** A vertex u is a **source** if it has no in-coming edges.
- ② A vertex u is a **sink** if it has no out-going edges.

## Simple DAG Properties

#### Proposition

Every DAG G has at least one source and at least one sink.

#### Proof

Let  $P = v_1, v_2, \ldots, v_k$  be a longest path in G. Claim that  $v_1$  is a source and  $v_k$  is a sink. Suppose not. Then  $v_1$  has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if  $v_k$  has an outgoing edge.

## Simple DAG Properties

#### Proposition

Every DAG G has at least one source and at least one sink.

#### Proof.

Let  $P = v_1, v_2, \ldots, v_k$  be a longest path in G. Claim that  $v_1$  is a source and  $v_k$  is a sink. Suppose not. Then  $v_1$  has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if  $v_k$  has an outgoing edge.

### DAG properties

- G is a DAG if and only if G<sup>rev</sup> is a DAG.
- ② G is a DAG if and only each node is in its own strong connected component. Formal proofs: exercise.

# THE END

...

(for now)

CS/ECE 374, Fall 2020

# 16.2.2

# Topological ordering

#### Total recall: Order on a set

<u>Order</u> or <u>strict total order</u> on a set X is a binary relation  $\prec$  on X, such that

- **②** For any  $x, y \in X$ , exactly one of the following holds:  $x \prec y$ ,  $y \prec x$  or x = y.

Cannot have  $x_1, \ldots, x_m \in X$ , such that  $x_1 \prec X_2, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$ , because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

#### Total recall: Order on a set

Order or strict total order on a set X is a binary relation  $\prec$  on X, such that

- ② For any  $x, y \in X$ , exactly one of the following holds:  $x \prec y$ ,  $y \prec x$  or x = y.

Cannot have  $x_1, \ldots, x_m \in X$ , such that  $x_1 \prec X_2, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$ , because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

#### Total recall: Order on a set

Order or strict total order on a set X is a binary relation  $\prec$  on X, such that

- **1** Transitivity:  $\forall x.y, z \in X$   $x \prec y$  and  $y \prec z \implies x \prec z$ .
- ② For any  $x, y \in X$ , exactly one of the following holds:  $x \prec y$ ,  $y \prec x$  or x = y.

Cannot have  $x_1, \ldots, x_m \in X$ , such that  $x_1 \prec X_2, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$ , because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

## Convention about writing edges

Undirected graph edges:

$$uv = \{u, v\} = vu \in E$$

② Directed graph edges:

$$u \rightarrow v \equiv (u, v) \equiv (u \rightarrow v)$$

## Topological Ordering/Sorting



#### **Definition**

A <u>topological ordering</u>/<u>topological sorting</u> of G = (V, E) is an ordering  $\prec$  on V such that if  $(u \rightarrow v) \in E$  then  $u \prec v$ .

#### Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

## DAGs and Topological Sort

#### Lemma

A directed graph G can be topologically ordered  $\iff$  G is a DAG.

Need to show both directions.

## DAGs and Topological Sort

#### Lemma

A directed graph G is a  $DAG \implies G$  can be topologically ordered.

#### Proof.

Consider the following algorithm:

- Pick a source **u**, output it.
- 2 Remove u and all edges out of u.
- Repeat until graph is empty.

Exercise: prove this gives topological sort.

## Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.

## Topological Sort: Example



## DAGs and Topological Sort

#### Lemma

A directed graph G can be topologically ordered  $\implies$  G is a DAG.

#### Proof.

Proof by contradiction. Suppose G is not a  $\overline{DAG}$  and has a topological ordering  $\prec$ . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1$$
.

Then  $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$ 

$$\implies u_1 \prec u_1$$
.

A contradiction (to  $\prec$  being an order). Not possible to topologically order the vertices.

## DAGs and Topological Sort

#### Lemma

A directed graph G can be topologically ordered  $\implies$  G is a DAG.

#### Proof.

Proof by contradiction. Suppose G is not a  $\overline{DAG}$  and has a topological ordering  $\prec$ . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1$$
.

Then  $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$ 

$$\implies u_1 \prec u_1$$
.

A contradiction (to  $\prec$  being an order). Not possible to topologically order the vertices.

## Regular sorting and DAGs

## DAGs and Topological Sort

• Note: A DAG G may have many different topological sorts.

- Exercise: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?
- Exercise: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?

# THE END

...

(for now)

CS/ECE 374, Fall 2020

# 16.2.2.1

Explicit defintion of what topological ordering

## An explicit defintion of what topological ordering of a graph is

For a graph G = (V, E) a **topological ordering** of a graph is a numbering  $\pi : V \to \{1, 2, ..., n\}$ , such that

$$\forall (u \rightarrow v) \in E(G) \implies \pi(u) < \pi(v).$$

(That is,  $\pi$  is one-to-one, and n = |V|)

# Example...



# THE END

...

(for now)

CS/ECE 374, Fall 2020

# 16.3 Depth First Search (DFS)

CS/ECE 374, Fall 2020

# 16.3.1

Depth First Search (DFS) in Undirected Graphs

## Depth First Search

- OFS special case of Basic Search.
- OFS is useful in understanding graph structure.
- **3 DFS** used to obtain linear time (O(m+n)) algorithms for
  - Finding cut-edges and cut-vertices of undirected graphs
  - Finding strong connected components of directed graphs
- ...many other applications as well.

## DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

```
\begin{array}{c} \mathsf{DFS}(G) \\ \mathsf{for} \ \mathsf{all} \ \ u \in V(G) \ \mathsf{do} \\ \quad & \mathsf{Mark} \ \ u \ \mathsf{as} \ \mathsf{unvisited} \\ \quad & \mathsf{Set} \ \mathsf{pred}(u) \ \mathsf{to} \ \mathsf{null} \\ \quad \  \  \, T \ \mathsf{is} \ \mathsf{set} \ \mathsf{to} \ \emptyset \\ \; \mathsf{while} \ \exists \ \mathsf{unvisited} \ \ u \ \mathsf{do} \\ \quad & \mathsf{DFS}(u) \\ \mathsf{Output} \ \ T \end{array}
```

```
DFS(u)

Mark u as visited

for each uv in Out(u) do

if v is not visited then

add edge uv to T

set pred(v) to u

DFS(v)
```

Implemented using a global array *Visited* for all recursive calls.

**T** is the search tree/forest.

### Example



Edges classified into two types:  $uv \in E$  is a

- 1 tree edge: belongs to T
- non-tree edge: does not belong to T

### Properties of DFS tree

#### Proposition

- **1** Is a forest
- $\bigcirc$  connected components of T are same as those of G.
- **1** If  $uv \in E$  is a non-tree edge then, in T, either:
  - $\mathbf{0}$   $\mathbf{u}$  is an ancestor of  $\mathbf{v}$ , or
  - $\mathbf{v}$  is an ancestor of  $\mathbf{u}$ .

Question: Why are there no cross-edges?

#### Exercise

Prove that **DFS** of a graph G with n vertices and m edges takes O(n + m) time.

### THE END

...

(for now)

### Algorithms & Models of Computation

CS/ECE 374, Fall 2020

### 16.3.2

### DFS with pre-post numbering

DFS

#### DFS with Visit Times

Keep track of when nodes are visited.

```
\begin{array}{c} \mathsf{DFS}(G) \\ \quad \mathsf{for \ all} \ \ u \in V(G) \ \ \mathsf{do} \\ \quad \quad \mathsf{Mark} \ \ u \ \ \mathsf{as} \ \ \mathsf{unvisited} \\ \boldsymbol{T} \ \ \mathsf{is \ set} \ \ \mathsf{to} \ \emptyset \\ \boldsymbol{\mathit{time}} = 0 \\ \quad \mathsf{while} \ \exists \ \mathsf{unvisited} \ \ \boldsymbol{\mathit{u}} \ \ \mathsf{do} \\ \quad \quad \quad \quad \quad \quad \quad \mathsf{DFS}(u) \\ \mathsf{Output} \ \ \boldsymbol{\mathit{T}} \end{array}
```

```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each uv in Out(u) do
        if v is not marked then
            add edge uv to T
            DFS(v)
    post(u) = ++time
```













| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
|        |             |



# time = 2 vertex |[pre, post]|1 [1,]







| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3,]        |
| 5      | [4,]        |
|        |             |



| [pre, post] |
|-------------|
| [1,]        |
| [2,]        |
| [3,]        |
| [4,]        |
| [5, ]       |
|             |
|             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3,]        |
| 5      | [4, ]       |
| 6      | [5, 6]      |
|        |             |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3,]        |
| 5      | [4, ]       |
| 6      | [5, 6]      |
| 3      | [7,]        |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3,]        |
| 5      | [4,]        |
| 6      | [5, 6]      |
| 3      | [7,]        |
| 7      | [8,]        |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3,]        |
| 5      | [4, ]       |
| 6      | [5, 6]      |
| 3      | [7,]        |
| 7      | [8,]        |
| 8      | [9,]        |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3,]        |
| 5      | [4, ]       |
| 6      | [5, 6]      |
| 3      | [7,]        |
| 7      | [8,]        |
| 8      | [9, 10]     |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3,]        |
| 5      | [4, ]       |
| 6      | [5, 6]      |
| 3      | [7,]        |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3,]        |
| 5      | [4, ]       |
| 6      | [5, 6]      |
| 3      | [7, 12]     |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
|        | _ •         |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3,]        |
| 5      | [4, 13]     |
| 6      | [5, 6]      |
| 3      | [7, 12]     |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2,]        |
| 4      | [3, 14]     |
| 5      | [4, 13]     |
| 6      | [5, 6]      |
| 3      | [7, 12]     |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1,]        |
| 2      | [2, 15]     |
| 4      | [3, 14]     |
| 5      | [4, 13]     |
| 6      | [5, 6]      |
| 3      | [7, 12]     |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1, 16]     |
| 2      | [2, 15]     |
| 4      | [3, 14]     |
| 5      | [4, 13]     |
| 6      | [5, 6]      |
| 3      | [7, 12]     |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1, 16]     |
| 2      | [2, 15]     |
| 4      | [3, 14]     |
| 5      | [4, 13]     |
| 6      | [5, 6]      |
| 3      | [7, 12]     |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
| 9      | [17,]       |
|        |             |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1, 16]     |
| 2      | [2, 15]     |
| 4      | [3, 14]     |
| 5      | [4, 13]     |
| 6      | [5, 6]      |
| 3      | [7, 12]     |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
| 9      | [17,]       |
| 10     | [18,]       |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1, 16]     |
| 2      | [2, 15]     |
| 4      | [3, 14]     |
| 5      | [4, 13]     |
| 6      | [5, 6]      |
| 3      | [7, 12]     |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
| 9      | [17,]       |
| 10     | [18, 19]    |



| vertex | [pre, post] |
|--------|-------------|
| 1      | [1, 16]     |
| 2      | [2, 15]     |
| 4      | [3, 14]     |
| 5      | [4, 13]     |
| 6      | [5, 6]      |
| 3      | [7, 12]     |
| 7      | [8, 11]     |
| 8      | [9, 10]     |
| 9      | [17, 20]    |
| 10     | [18, 19]    |





Node u is <u>active</u> in time interval [pre(u), post(u)]

#### Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If  $\mathsf{DFS}(v)$  invoked before  $\mathsf{DFS}(u)$  finished,  $\mathsf{post}(v) < \mathsf{post}(u)$ .
- If  $\mathsf{DFS}(v)$  invoked after  $\mathsf{DFS}(u)$  finished,  $\mathsf{pre}(v) > \mathsf{post}(u)$ .

pre and post numbers useful in several applications of DFS

Node u is <u>active</u> in time interval [pre(u), post(u)]

#### **Proposition**

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If  $\mathsf{DFS}(v)$  invoked before  $\mathsf{DFS}(u)$  finished,  $\mathsf{post}(v) < \mathsf{post}(u)$ .
- If  $\mathsf{DFS}(v)$  invoked after  $\mathsf{DFS}(u)$  finished,  $\mathsf{pre}(v) > \mathsf{post}(u)$ .

 ${f pre}$  and  ${f post}$  numbers useful in several applications of  ${f DFS}$ 

Node u is <u>active</u> in time interval [pre(u), post(u)]

#### **Proposition**

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If  $\mathsf{DFS}(v)$  invoked before  $\mathsf{DFS}(u)$  finished,  $\mathsf{post}(v) < \mathsf{post}(u)$ .
- If  $\mathsf{DFS}(v)$  invoked after  $\mathsf{DFS}(u)$  finished,  $\mathsf{pre}(v) > \mathsf{post}(u)$ .

pre and post numbers useful in several applications of DFS

Node u is <u>active</u> in time interval [pre(u), post(u)]

#### **Proposition**

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If  $\mathsf{DFS}(v)$  invoked before  $\mathsf{DFS}(u)$  finished,  $\mathsf{post}(v) < \mathsf{post}(u)$ .
- If  $\mathsf{DFS}(v)$  invoked after  $\mathsf{DFS}(u)$  finished,  $\mathsf{pre}(v) > \mathsf{post}(u)$ .

 ${f pre}$  and  ${f post}$  numbers useful in several applications of  ${f DFS}$ 

Node u is <u>active</u> in time interval [pre(u), post(u)]

#### **Proposition**

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If  $\mathsf{DFS}(v)$  invoked before  $\mathsf{DFS}(u)$  finished,  $\mathsf{post}(v) < \mathsf{post}(u)$ .
- If  $\mathsf{DFS}(v)$  invoked after  $\mathsf{DFS}(u)$  finished,  $\mathsf{pre}(v) > \mathsf{post}(u)$ .

 ${f pre}$  and  ${f post}$  numbers useful in several applications of  ${f DFS}$ 

Node u is <u>active</u> in time interval [pre(u), post(u)]

#### **Proposition**

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If  $\mathsf{DFS}(v)$  invoked before  $\mathsf{DFS}(u)$  finished,  $\mathsf{post}(v) < \mathsf{post}(u)$ .
- If  $\mathsf{DFS}(v)$  invoked after  $\mathsf{DFS}(u)$  finished,  $\mathsf{pre}(v) > \mathsf{post}(u)$ .

pre and post numbers useful in several applications of DFS

# THE END

...

(for now)

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# 16.4

# DFS in Directed Graphs

DFS

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

## 16.4.1

# DFS in Directed Graphs: Pre/Post numbering

DFS

#### DFS in Directed Graphs

```
DFS(G)
   Mark all nodes u as unvisited
   T is set to 0
   time = 0
   while there is an unvisited node u do
        DFS(u)
   Output T
```

## Example of DFS in directed graph



## Example of DFS in directed graph



#### Generalizing ideas from undirected graphs:

- **1 DFS**(G) takes O(m + n) time.
- ② Edges added form a branching: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if  $v \in rch(u)$
- For any two vertices x, y the intervals  $[\mathbf{pre}(x), \mathbf{post}(x)]$  and  $[\mathbf{pre}(y), \mathbf{post}(y)]$  are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- **1 DFS**(G) takes O(m + n) time.
- 2 Edges added form a <u>branching</u>: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if  $v \in rch(u)$
- The For any two vertices x, y the intervals  $[\mathbf{pre}(x), \mathbf{post}(x)]$  and  $[\mathbf{pre}(y), \mathbf{post}(y)]$  are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- **1 DFS**(G) takes O(m + n) time.
- 2 Edges added form a <u>branching</u>: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if  $v \in rch(u)$
- The For any two vertices x, y the intervals  $[\mathbf{pre}(x), \mathbf{post}(x)]$  and  $[\mathbf{pre}(y), \mathbf{post}(y)]$  are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- **1 DFS**(G) takes O(m + n) time.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if  $v \in rch(u)$
- For any two vertices x, y the intervals  $[\mathbf{pre}(x), \mathbf{post}(x)]$  and  $[\mathbf{pre}(y), \mathbf{post}(y)]$  are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- **1 DFS**(G) takes O(m + n) time.
- 2 Edges added form a <u>branching</u>: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if  $v \in rch(u)$
- For any two vertices x, y the intervals  $[\mathbf{pre}(x), \mathbf{post}(x)]$  and  $[\mathbf{pre}(y), \mathbf{post}(y)]$  are either disjoint or one is contained in the other.

## DFS tree and related edges

Edges of G can be classified with respect to the **DFS** tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).
- **3** A <u>backward edge</u> is a non-tree edge (y, x) such that  $\operatorname{pre}(x) < \operatorname{pre}(y) < \operatorname{post}(y) < \operatorname{post}(x)$ .
- **4** A <u>cross edge</u> is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.



## Types of Edges



# THE END

...

(for now)

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# 16.4.2

 $\overline{\mathrm{DFS}}$  and cycle detection: Topological sorting using  $\overline{\mathrm{DFS}}$ 

 $_{\mathrm{DFS}}$ 

## Cycles in graphs

**Question:** Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

#### Cycles in graphs

**Question:** Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

**Question:** Given an <u>directed</u> graph how do we check whether it has a cycle and output one if it has one?

## Cycle detection in directed graph using topological sorting

#### Question

Given G, is it a DAG?

If it is, compute a topological sort. If it failes, then output the cycle C.

## Topological sort a graph using DFS...

And detect a cycle in the propcesss

#### **DFS** based algorithm:

- Compute DFS(G)
- ② If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- **3** Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

## Topological sort a graph using DFS...

And detect a cycle in the propcesss

#### **DFS** based algorithm:

- Compute DFS(G)
- ② If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- **3** Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

## Topological sort a graph using DFS...

And detect a cycle in the propcesss

#### **DFS** based algorithm:

- Compute DFS(G)
- ② If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

#### Back edge and Cycles

#### Proposition

G has a cycle  $\iff$  there is a back-edge in **DFS**(G).

#### Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge (u, v).

Only if: Suppose there is a cycle  $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$ .

Let  $v_i$  be first node in C visited in DFS.

All other nodes in C are descendants of  $v_i$  since they are reachable from  $v_i$ .

Therefore,  $(v_{i-1}, v_i)$  (or  $(v_k, v_1)$  if i = 1) is a back edge.

## Decreasing post numbering is valid

#### Proposition

If G is a DAG and post(v) > post(u), then ( $u \rightarrow v$ ) is not in G.

#### Proof.

Assume post(u) < post(v) and  $(u \rightarrow v)$  is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

## Decreasing post numbering is valid

#### Proposition

If G is a DAG and post(v) > post(u), then ( $u \rightarrow v$ ) is not in G.

#### Proof.

Assume post(u) < post(v) and  $(u \rightarrow v)$  is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].



## Decreasing post numbering is valid

#### Proposition

If G is a DAG and post(v) > post(u), then ( $u \rightarrow v$ ) is not in G.

#### Proof.

Assume post(u) < post(v) and  $(u \rightarrow v)$  is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.



#### **Translation**

We just proved:

#### Proposition

If G is a DAG and post(v) > post(u), then ( $u \rightarrow v$ ) is not in G.

⇒ sort the vertices of a DAG by decreasing post nubmering in decreasing order, then this numbering is valid.

## Topological sorting

#### **Theorem**

G = (V, E): Graph with n vertices and m edges.

Comptue a topological sorting of G using DFS in O(n + m) time.

That is, compute a numbering  $\pi: V \to \{1, 2, \dots, n\}$ , such that

$$(u \to v) \in E(G) \implies \pi(u) < \pi(v).$$

# Example



# THE END

. . .

(for now)

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# 16.5

The meta graph of strong connected components

## Strong Connected Components (SCCs)

#### Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture:

Saw an  $O(n \cdot (n + m))$  time algorithm.

This lecture: sketch of a O(n+m) time algorithm.



## Graph of SCCs





#### Meta-graph of SCCs

Let  $S_1, S_2, \dots S_k$  be the strong connected components (i.e., SCCs) of G. The graph of SCCs is  $G^{SCC}$ 

- Vertices are  $S_1, S_2, \dots S_k$
- ② There is an edge  $(S_i, S_j)$  if there is some  $u \in S_i$  and  $v \in S_j$  such that (u, v) is an edge in G.

#### Reversal and SCCs

#### Proposition

For any graph G, the graph of SCCs of  $G^{rev}$  is the same as the reversal of  $G^{SCC}$ .

#### Proof.

Exercise.



## The meta graph of SCCs is a DAG...

#### Proposition

For any graph G, the graph  $G^{SCC}$  has no directed cycle.

#### Proof.

If  $G^{SCC}$  has a cycle  $S_1, S_2, \ldots, S_k$  then  $S_1 \cup S_2 \cup \cdots \cup S_k$  should be in the same SCC in G. Formal details: exercise.



#### To Remember: Structure of Graphs

**Undirected graph:** connected components of G = (V, E) partition V and can be computed in O(m + n) time.

**Directed graph:** the meta-graph  $G^{\rm SCC}$  of G can be computed in O(m+n) time.  $G^{\rm SCC}$  gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

# THE END

...

(for now)

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# 16.6

Linear time algorithm for finding all strong connected components of a directed graph

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# 16.6.1

Wishful thinking linear-time SCC algorithm

SCC

## Finding all SCCs of a Directed Graph

#### **Problem**

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

```
Running time: O(n(n+m)) is there an O(n+m) time algorithm?
```

## Finding all SCCs of a Directed Graph

#### **Problem**

Given a directed graph G = (V, E), output all its strong connected components.

#### Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n+m))

Is there an  $oldsymbol{O}(oldsymbol{n}+oldsymbol{m})$  time algorithm?

## Finding all SCCs of a Directed Graph

#### **Problem**

Given a directed graph G = (V, E), output all its strong connected components.

#### Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find \mathrm{SCC}(G,u) the strong component of u:

Compute \mathrm{rch}(G,u) using \mathrm{DFS}(G,u)

Compute \mathrm{rch}(G^{\mathrm{rev}},u) using \mathrm{DFS}(G^{\mathrm{rev}},u)

\mathrm{SCC}(G,u) \Leftarrow \mathrm{rch}(G,u) \cap \mathrm{rch}(G^{\mathrm{rev}},u)

\forall u \in \mathrm{SCC}(G,u): Mark u as visited.
```

Running time: O(n(n+m))Is there an O(n+m) time algorithm?

#### Structure of a Directed Graph





#### Reminder

 $\mathsf{G}^{\mathrm{SCC}}$  is created by collapsing every strong connected component to a single vertex.

#### Proposition

For a directed graph G, its meta-graph  $G^{SCC}$  is a DAG.

Exploit structure of meta-graph...

#### Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of  $G^{SCC}$
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **OPPOSITION DFS**(u) only visits vertices (and edges) in SCC(u)
- 2
- 3
- 24

Exploit structure of meta-graph...

#### Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of  $G^{SCC}$
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **1 DFS**(u) only visits vertices (and edges) in SCC(u)
- 2
- 3
- 74

Exploit structure of meta-graph...

#### Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of  $G^{SCC}$
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **OPPOS DFS**(u) only visits vertices (and edges) in SCC(u)
- 2 ... since there are no edges coming out a sink!
- 3
- 4

Exploit structure of meta-graph...

#### Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of  $G^{SCC}$
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **1 DFS**(u) only visits vertices (and edges) in SCC(u)
- 2 ... since there are no edges coming out a sink!
- **3 DFS**(u) takes time proportional to size of SCC(u)
- 4

Exploit structure of meta-graph...

#### Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of  $G^{SCC}$
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **OPPS**(u) only visits vertices (and edges) in SCC(u)
- … since there are no edges coming out a sink!
- **3 DFS**(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n + m)!

## Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!

## Big Challenge(s)

How do we find a vertex in a sink SCC of  $G^{SCC}$ ?

Can we obtain an implicit topological sort of G<sup>SCC</sup> without computing G<sup>SCC</sup>?

Answer: DFS(G) gives some information!

## Big Challenge(s)

How do we find a vertex in a sink SCC of  $G^{SCC}$ ?

Can we obtain an implicit topological sort of G<sup>SCC</sup> without computing G<sup>SCC</sup>?

Answer: DFS(G) gives some information!

# THE END

. . .

(for now)

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# 16.6.2

Maximum post numbering and the source of the meta-graph

## Post numbering and the meta graph

#### Claim

Let v be the vertex with maximum post numbering in DFS(G). Then v is in a SCC S, such that S is a source of  $G^{SCC}$ .

## Reverse post numbering and the meta graph

#### Claim

Let v be the vertex with maximum post numbering in  $DFS(G^{rev})$ . Then v is in a SCC S, such that S is a sink of  $G^{SCC}$ .

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

#### Reverse post numbering and the meta graph

#### Claim

Let v be the vertex with maximum post numbering in  $DFS(G^{rev})$ . Then v is in a SCC S, such that S is a sink of  $G^{SCC}$ .

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

# THE END

...

(for now)

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# 16.6.3

The linear-time SCC algorithm itself

SCC

#### Linear Time Algorithm

...for computing the strong connected components in G

```
egin{array}{lll} {f down} & {f DFS}({\it G}^{
m rev}) & {f and} & {f output} & {f vertices} & {f in} & {f decreasing} & {f post} & {f order}. \\ {f Mark all nodes} & {f as unvisited} & {f down} & {f down} & {f order} & {f down} & {f down} & {f order} & {f down} & {f order} & {f down} & {f output} & {f down} & {f output} & {f down} & {f down} & {f output} & {f down} & {f output} & {f down} & {f
```

#### **Theorem**

Algorithm runs in time O(m+n) and correctly outputs all the SCCs of G.

## Linear Time Algorithm: An Example - Initial steps 1

Graph G:

Reverse graph **G**<sup>rev</sup>:

**DFS** of reverse graph:







## Linear Time Algorithm: An Example - Initial steps 2



Removing connected components: 1

Original graph G with rev post numbers:



Do **DFS** from vertex G remove it.



SCC computed:

{*G*}

Removing connected components: 2

Do **DFS** from vertex G

remove it.

12

B

A

C

4

10

E

F

11

D

5

 ${\operatorname{SCC}}$  computed:

{*G*}

Do **DFS** from vertex *H*, remove it.



 $\Longrightarrow$ 

SCC computed:

 $\{G\},\{H\}$ 

Removing connected components: 3

Do **DFS** from vertex **H**, remove it.



Do **DFS** from vertex B Remove visited vertices:  $\{F, B, E\}$ .



SCC computed: 
$$\{G\}, \{H\}$$

SCC computed: 
$$\{G\}, \{H\}, \{F, B, E\}$$

Removing connected components: 4

Do **DFS** from vertex **F** Remove visited vertices:



SCC computed:

$$\{G\}, \{H\}, \{F, B, E\}$$

Do **DFS** from vertex A Remove visited vertices:  $\{A, C, D\}$ .



SCC computed:

$$\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$$

#### Final result



SCC computed:

$$\{G\}, \{H\}, \{F,B,E\}, \{A,C,D\}$$

Which is the correct answer!

#### Obtaining the meta-graph...

Once the strong connected components are computed.

#### Exercise:

Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph  $G^{\rm SCC}$  can be obtained in O(m+n) time.

## Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph  $G^{SCC}$ ?

# THE END

...

(for now)

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

## 16.7

An Application of directed graphs to make

## Make/Makefile

- I know what make/makefile is.
- I do NOT know what make/makefile is.

#### make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
  - Object files to be created,
  - Source/object files to be used in creation, and
  - 6 How to create them

#### An Example makefile

## makefile as a Digraph



#### Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

#### Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- ② If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
  - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

# THE END

...

(for now)

## Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# **16.8** Summary

#### Take away Points

- O DAGs
- Topological orderings.
- OFS: pre/post numbering.
- Given a directed graph G, its SCCs and the associated acyclic meta-graph G<sup>SCC</sup> give a structural decomposition of G that should be kept in mind.
- There is a **DFS** based linear time algorithm to compute all the SCCs and the meta-graph. Properties of **DFS** crucial for the algorithm.
- ODAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).