Algorithms & Models of Computation

More Dynamic Programming

Lecture 14
Tuesday, October 13, 2020

ATEXed: September 11, 2020 16:00

1/67

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.1

Review of dynamic programming and some
new problems

2/67

What is the running time of the following?

Consider computing f(x, y) by recursive function + memoization.

Q@
[+ (
Q@

x+y—1
Z x*xfF(x+y—i,i—1),
i=1
f(0,y) = f(x,0) = x.
The resulting algorithm when computing f(n, n) would take:
O(n)
O(nlog n)
O(n?)
o(n®)

Q@
[+ (

The function is ill defined - it can not be computed.

3/67

Recipe for Dynamic Programming

@ Develop a recursive backtracking style algorithm A for given problem.
@ Identify structure of subproblems generated by .A on an instance I of size n

@ Estimate number of different subproblems generated as a function of n. Is it
polynomial or exponential in n?

@ If the number of problems is “small” (polynomial) then they typically have some
“clean” structure.

© Rewrite subproblems in a compact fashion.

@ Rewrite recursive algorithm in terms of notation for subproblems.

© Convert to iterative algorithm by bottom up evaluation in an appropriate order.
@ Optimize further with data structures and/or additional ideas.

4/67

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.1.1
Is in LK?

5/67

A variation

Input A string w € ¥* and access to a language L C ¥* via function

IsStringinL(string x) that decides whether x is in L, and non-negative
integer k

Goal Decide if w € Lk using IsStringinL(string x) as a black box sub-routine
Example

Suppose L is English and we have a procedure to check whether a string/word is in the
English dictionary.

@ Is the string “isthisanenglishsentence” in English®?
@ Is the string “isthisanenglishsentence” in English*?
o Is “asinineat” in English®?
@ Is “asinineat” in English*?
e Is “zibzzzad" in English'?

6/67

Recursive Solution
When is w € Lk?

7/67

Recursive Solution

When is w € Lk?

k=0 welLkiffw=c¢

k=1 welkiffwel

k>l welkifw=uvwithuelsTandvelL

7/67

Recursive Solution

When is w € Lk?
k=0 we€ELkiffw=c¢
k=1 welLkiffwel

k>1welkifw=uvwithuelstandvelL
Assume w is stored in array A[l..n]

IsStringinLk(A[1...i], k):

if k=0 and i =0 then return YES

if k=0 then returnN0 // i >0
if k=1 then

return IsStringinL(A[1l...{])

for =1...i—1 do

if IsStringinLk(A[l...¢],k — 1) and IsStringinL(A[£ + 1
return YES

return NO

...1]) then

7/67

Analysis

IsStringinLk(A[1...i], k):
if k=0 and i = 0 then return YES
if k=0 then returnN0 // i >0
if k=1 then
return IsStringinL(A[l...1])

for e=1...i—1 do
if IsStringinLk(A[1l...£],k — 1) and IsStringinL(A[£ + 1...i]) then
return YES

return NO

@ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?

8/67

Analysis

IsStringinLk(A[1...i], k):
if k=0 and i = 0 then return YES
if k=0 then returnN0 // i >0
if k=1 then
return IsStringinL(A[l...1])

for e=1...i—1 do
if IsStringinLk(A[1l...£],k — 1) and IsStringinL(A[£ + 1...i]) then
return YES

return NO

@ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

8/67

Analysis

IsStringinLk(A[1...i], k):
if k=0 and i = 0 then return YES
if k=0 then returnN0 // i >0
if k=1 then
return IsStringinL(A[l...1])

for e=1...i—1 do
if IsStringinLk(A[1l...£],k — 1) and IsStringinL(A[£ + 1...i]) then
return YES

return NO

@ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

@ How much space?

8/67

Analysis

IsStringinLk(A[1...i], k):
if k=0 and i = 0 then return YES
if k=0 then returnN0 // i >0
if k=1 then
return IsStringinL(A[l...1])

for e=1...i—1 do
if IsStringinLk(A[1l...£],k — 1) and IsStringinL(A[£ + 1...i]) then
return YES

return NO

@ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)
@ How much space? O(nk)

8/67

Analysis

IsStringinLk(A[1...i], k):
if k=0 and i = 0 then return YES
if k=0 then returnN0 // i >0
if k=1 then
return IsStringinL(A[l...1])

for e=1...i—1 do
if IsStringinLk(A[1l...£],k — 1) and IsStringinL(A[£ + 1...i]) then
return YES

return NO

@ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

@ How much space? O(nk)

@ Running time if we use memoization?

8/67

Analysis

IsStringinLk(A[1...i], k):
if k=0 and i = 0 then return YES
if k=0 then returnN0 // i >0
if k=1 then
return IsStringinL(A[l...1])

for e=1...i—1 do
if IsStringinLk(A[1l...£],k — 1) and IsStringinL(A[£ + 1...i]) then
return YES

return NO

@ How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?
O(nk)

@ How much space? O(nk)

@ Running time if we use memoization? O(n?k)

8/67

Another variant

Question: What if we want to check if w € L for some 0 < i < k? That is, is
w € Uk L7?

9/67

Exercise

Definition
A string is a palindrome if w = wF.

Examples: I, RACECAR, MALAYALAM, DOOFFOOD

10/67

Exercise

Definition
A string is a palindrome if w = wR.
Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Problem: Given a string w find the longest subsequence of w that is a palindrome.

Example

MAHDYNAMICPROGRAMZLETMESHOWYOQOUTHEM has
MHYMRORMYHM as a palindromic subsequence

10/67

Exercise

Assume w is stored in an array A[l..n]

LPS(A[1..n]): length of longest palindromic subsequence of A.

Recursive expression/code?

11/67

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.2
Edit Distance and Sequence Alignment

13/67

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.2.1

Problem definition and background

14/67

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

15/67

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings X1 X, . .. X, and y;y> . .. Yy, What is a distance between
them?

15/67

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings X1 X, . .. X, and y;y> . .. Yy, What is a distance between
them?

Edit Distance: minimum number of “edits” to transform x into y.

15/67

Edit Distance

Definition
Edit distance between two words X and Y is the number of letter insertions, letter
deletions and letter substitutions required to obtain Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD — MOOD — MONOD — MONED — MONEY

16 /67

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions,

and gaps in the second word indicating deletions.

F O O D
M ONEY

17/67

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions,
and gaps in the second word indicating deletions.

F O O D
M ONEY

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most
once, and there is no “crossing”: i < i’ and i is matched to j implies i’ is matched to
J' > j. In the above example, thisis M = {(1,1),(2,2),(3,3),(4,5)}.

17/67

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions,
and gaps in the second word indicating deletions.

F O O D
M ONEY

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most
once, and there is no “crossing”: i < i’ and i is matched to j implies i’ is matched to
J > j. In the above example, thisis M = {(1,1),(2,2),(3,3),(4,5)}. Cost of an

alignment is the number of mismatched columns plus number of unmatched indices in
both strings.

17/67

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest
cost.

18/ 67

Applications

@ Spell-checkers and Dictionaries
@ Unix diff
© DNA sequence alignment ... but, we need a new metric

19/67

Similarity Metric

Definition
For two strings X and Y/, the cost of alignment M is
© [Gap penalty] For each gap in the alignment, we incur a cost §.

@ [Mismatch cost| For each pair p and g that have been matched in M, we incur
cost apg; typically app = 0.

20/ 67

Similarity Metric

Definition
For two strings X and Y/, the cost of alignment M is
© [Gap penalty] For each gap in the alignment, we incur a cost §.

@ [Mismatch cost| For each pair p and g that have been matched in M, we incur
cost apgq; typically app, = 0.

Edit distance is special case when § = apq = 1.

20/ 67

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.2.2

Edit distance as alignment

22/67

An Example

Example
o clu|lr|lr|laln|c|e
o|lc|c|lu|r|r|le|n|c|e Cost = 0 + g
Alternative:
o clulr|r aln|cl|e
o|lclcl|lu r|ie nic|e Cost = 36

Or a really stupid solution (delete string, insert other string):

o|Cc|u|r|rjajn|cj|e

o|c|c|\u|r|rje|njc|e

Cost = 194.

23/67

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion /change of a single character cost 1 unit?

473

e
(€2 I O N S

24 /67

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion /change of a single character cost 1 unit?

373
473
@ 1
Q@ 2
@ 3
Q@ 4
@ 5

25 /67

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion /change of a single character cost 1 unit?

473

e
(€2 I O N S

26 /67

Sequence Alignment

Input Given two words X and Y, and gap penalty 6 and mismatch costs cpq

Goal Find alignment of minimum cost

27 /67

Sequence Alignment in Practice

@ Typically the DNA sequences that are aligned are about 10° letters long!
@ So about 10 operations and 10%° bytes needed
© The killer is the 10GB storage

@ Can we reduce space requirements?

28 /67

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.2.3
Edit distance: The algorithm

30/67

Edit distance

Basic observation

Let X = axand Y = By

a, 3: strings.

x and y single characters.

Think about optimal edit distance between X and Y as alignment, and consider last
column of alignment of the two strings:

(87

X

B

Yy

Observation
Prefixes must have optimal alignment!

or

(87

X

By

or

(69, ¢

31/67

Problem Structure

Observation

Let X = x1Xp+++ Xm and Y = y1¥» + = - yo. If (m, n) are not matched then either the
mth position of X remains unmatched or the nth position of Y remains unmatched.

Q@ Case x,, and y,, are matched.

©® Pay mismatch cost ay,,y, plus cost of aligning strings x; «++ xpm—1 and y1 -+ - yn_1
@ Case x,,, is unmatched.

@ Pay gap penalty plus cost of aligning x1 +++Xm_1 and y1 -+ - yn
© Case y, is unmatched.

@ Pay gap penalty plus cost of aligning x1 +++xm and y1++« Yp—1

32/67

Subproblems and Recurrence

X1 eeeXj—1

Xj

Yi-..Yj—1

Yi

Optimal Costs

or

X1 eeeXj—1

Yi...Yj—-1Yj

or

Let Opt(i,) be optimal cost of aligning x; - -+ x; and y; - -

Opt(i,j) = min

X1 oo o Xj—1Xj

Y1---yj—1

Yi

- yj. Then

Oy + Opt(i — 1,5 — 1),

d + Opt(i — 1,j),
d + Opt(i,j — 1)

33/67

Subproblems and Recurrence

X1 eeeXj—1

Xj

Yi-..Yj—1

Yi

Optimal Costs

or

X1 eeeXj—1 X

Yi...Yj—-1Yj

or

Let Opt(i,) be optimal cost of aligning x; - -+ x; and y; - -

X1 oo o Xj—1Xj

y]_...yj_]_

Yi

- yj. Then

Oy + Opt(i — 1,5 — 1),
Opt(i, j) = min { & + Opt(i — 1,),

d + Opt(i,j — 1)

Base Cases: Opt(i,0) = 6 - i and Opt(0,j) =4 - j

33/67

Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[l..n]
Array COST stores cost of matching two chars. Thus COST |[a, b| give the cost of
matching character a to character b.

EDIST (A[1..m], B[1..n])
If (m=0) return nd
If (n=0) return md
m; = § + EDIST(A[1..(m — 1)], B[1..n])
my = § + EDIST(A[1l..m], B[1..(n — 1)]))
m; = COST[A[m], B[n]] + EDIST(A[l..(m — 1)], B[1..(n — 1)])
return min(my, my, m;)

34/67

Example: DEED and DREAD
e | D| R| E| A |D

35/67

Example: DEED and DREAD

€ D R E A D
€ 0 1 2 3 4 5
D| 1
E| 2
E| 3

35/67

Example: DEED and DREAD

€ D R E A D
€ 0 1 2 3 4 5
D| 1 0 1 2 3 4
E| 2
E| 3

35/67

Example: DEED and DREAD
€ D R E A D

€ 0 1 2 3 4 5

35/67

Example: DEED and DREAD

€ D R E A D
€ 0 1 2 3 4 5
D| 1 0 1 2 3 4
E| 2 1 1 1 2 3
E| 3 2 2 1 2 3

35/67

Example: DEED and DREAD

€ D R E A D
€ 0 1 2 3 4 5
D| 1 0 1 2 3 4
E| 2 1 1 1 2 3
E| 3 2 2 1 2 3
D| 3 3 3 2 2 2

35/67

Example: DEED and DREAD

NN
NN
N

vw\ ﬁ\x
afa yw\yw\vv\vv\
< 3
— %\Vw\ﬁ\ﬁ\
— 3
o2 W
0o W\%\ﬁ\%\m
Q To) < I3p) I3p) N
< < ™ o~ V] V]
w o™ lq\ A T lq\
(g o — — o~ ™
Ql - o — o~ o™
wl o — N ™ o

W Q w W Q

35/67

Example: DEED and DREAD

R
R
R
R
N

g
Rz
=2 LAY

35/67

Example: DEED and DREAD

R
R
R
R
N

NS

Vw\ Vw\x
oA %\ Vv\
< 3
— %\Vw\ﬁ\ﬁ\
— %)
o L
0o W\%\ﬁ\ﬁ\m
Q Lo < o™ o™ N
< < ™ o~ V] V]
w o™ lq\ A T lq\
(g o — — o~ ™
Q — o — ~ o™
w| o — oV o™ o
") Q w W Q

35/67

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.2.4

Dynamic programming algorithm for
edit-distance

37/67

As part of the input...

The cost of aligning a character against another character

2 : Alphabet

We are given a cost function (in a table):

Vb,c € ¥ COSTIb][c] = cost of aligning b with c.

Vbe Y COSTIb][b] = 0

& : price of deletion of insertion of a single character

38/67

Memoizing the Recursive Algorithm (Explicit Memoization)

edEMI(i, j) // All...i,B[l...]]
if M[i][j] < oo
return M[i][j] // stored value
Input: Two strings i i=0orj—0

All...m] MIil[j] = (i +j)o
B[l...n] return M(i][j]

m; =6 +edEMI(i —1, j)

EditDistance (A, B) m, = 6 + edEMI(i,j — 1)

int MJ0..m][0..n]
Vi,j MIi][j] < oo
return edEMI(m, n) ms = COST [A[i]] [Blj]]

4 edEMI(i—1,j—1)

M(i][j] = min(my, my, ms)
return M[i][j]

39/67

Dynamic program for edit distance

Removing Recursion to obtain Iterative Algorithm

EDIST (A[l..m], B[1..n])
int MJ0..m][0..n]

for i=1 to m do
for j =1 to n do

M(i][j] = min

for i=1 to m do MJi,0] =ié
for j =1 to n do MJ0,j] =jé

cosT [A[i]] [BIj]] + MIi — 1][j — 1],
d + M[i — 1][j],
8 + Mi][j — 1]

40/ 67

Dynamic program for edit distance

Removing Recursion to obtain Iterative Algorithm

Analysis

EDIST (A[l..m], B[1..n])
int MJ0..m][0..n]

for i=1 to m do MJi,0] =ié
for j =1 to n do MJ0,j] =jé

for i=1 to m do
for j =1 to n do

M(i][j] = min

cosT [A[i]] [BIj]] + MIi — 1][j — 1],
d + M[i — 1][j],
8 + Mi][j — 1]

40/ 67

Dynamic program for edit distance

Removing Recursion to obtain Iterative Algorithm

EDIST (A[1l..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do MJi,0] =ié
for j=1 to n do MJ[0,j] =jé

for i=1 to m do
for j=1 to n do
COST[A[i]] [B[j]] + M[i — 1][j — 1],
MIil[j] = min < & + M[i — 1][j],
6+ MIil[j — 1]

Analysis
@ Running time is O(mn).
@ Space used is O(mn).

40/67

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.2.5

Reducing space for edit distance

42/67

Matrix and DAG of computation of edit distance

Figure: Iterative algorithm in previous slide computes values in row order.

43/67

Optimizing Space
@ Recall
Olxy; T M(i —1,j —1),
M(i,j) = min ¢ & + M(i — 1,j),
6+ M(i’j - 1)

@ Entries in jth column only depend on (j — 1)st column and earlier entries in jth
column

@ Only store the current column and the previous column reusing space; N(i,0)
stores M(i,j — 1) and N(i, 1) stores M(i,)

44/ 67

Example: DEED vs. BREAD filled by column
e | D| R| E| A |D

45 /67

Example: DEED vs. BREAD filled by column

€ D R E A D
€ 0 1 2 3 4 5
D| 1
E| 2
E| 3

45 /67

Example: DEED vs. BREAD filled by column
€ D R E A D

€ 0 1 2 3 4 5

D| 1 0
E| 2 1
E| 3 2

45 /67

Example: DEED vs. BREAD filled by column

€ D R E A D
€ 0 1 2 3 4 5
D| 1 0 1
E| 2 1 1
E| 3 2 2
D| 3 3 3

45 /67

Example: DEED vs. BREAD filled by column

€ D R E A D
€ 0 1 2 3 4 5
D| 1 0 1 2
E| 2 1 1 1
E| 3 2 2 1
D| 3 3 3 2

45 /67

Example: DEED vs. BREAD filled by column

€ D R E A D
€ 0 1 2 3 4 5
D| 1 0 1 2 3
E| 2 1 1 1 2
E| 3 2 2 1 2
D| 3 3 3 2 2

45 /67

Example: DEED vs. BREAD filled by column

€ D R E A D
€ 0 1 2 3 4 5
D| 1 0 1 2 3 4
E| 2 1 1 1 2 3
E| 3 2 2 1 2 3
D| 3 3 3 2 2 2

45 /67

Computing in column order to save space

N
.§®

A

Figure: M(i,j) only depends on previous column values. Keep only two columns and compute

in column order.

46 /67

Space Efficient Algorithm

for a1l i do N[i,0] = id
for j =1 to n do
N[0,1] = j& (* corresponds to M(0,j) *)
for i=1 to m do
Qxy; + N[i — 1,0]
N[i,1] =min¢ d + N[i — 1,1]
d + NI[i,0]
for i=1 to m do
Copy NI[i,0] = NIi, 1]

Analysis
Running time is O(mn) and space used is O(2m) = O(m)

47 /67

Analyzing Space Efficiency

@ From the m X n matrix M we can construct the actual alignment (exercise)
@ Matrix N computes cost of optimal alignment but no way to construct the actual
alignment

© Space efficient computation of alignment? More complicated algorithm — see
notes and Kleinberg-Tardos book.

48 /67

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.2.6

Longest Common Subsequence Problem

50 /67

LCS Problem

Definition
LCS between two strings X and Y is the length of longest common subsequence
between X and Y.

ABAZDC ABAZDC
BACBAD BACBAD

51/67

LCS Problem

Definition
LCS between two strings X and Y is the length of longest common subsequence
between X and Y.

ABAZDC ABAZDC

BACBAD BACBAD

Example
LCS between ABAZDC and BACBAD is 4 via ABAD J

51/67

LCS Problem

Definition
LCS between two strings X and Y is the length of longest common subsequence
between X and Y.
ABAZDC ABAZDC
BACBAD BACBAD
Example
LCS between ABAZDC and BACBAD is 4 via ABAD J

Derive a dynamic programming algorithm for the problem.

51/67

LCS recursive definition
A[l..n], B[1..m]: Input strings.

0 i=0o0rj=0
LCS(’ - 1aj)7 . .
LCS(i,j) = max(LCS(i,j — 1) > Alil # Bljl
J) = LCS(i — 1,)),
max LCS(i,j — 1), A[i] = Bj]
(1+ LCS(i — 1,j — 1)

52 /67

LCS recursive definition

A[l..n], B[1..m]: Input strings.

LCS(i,j) =

Similar to edit distance..

(0 i=0o0rj=0
LCS(i — 1,)), . .
max< A) Alil # BIj
LCS(’ - 1’_/.)’
max LCS(i,j— 1), Ali] = BJ[j]
\ 1+LCS(i—1,j—1)

. O(nm) time algorithm O(m) space.

52/67

Longest common subsequence is just edit distance for the two
sequences...

A, B: input sequences
2 : “alphabet” all the different values in A and B

Vb,ceX:b#c COSTb][c] = +oo.

Vb e s COSTIb][b] = 1

1 : price of deletion of insertion of a single character

53/67

Longest common subsequence is just edit distance for the two
sequences...

A, B: input sequences
2 : “alphabet” all the different values in A and B

Vb,ceX:b#c COSTb][c] = +oo.
Vb € ¥ COSTIb][b] =1
1 : price of deletion of insertion of a single character

Length of longest common subsequence = m + n — ed(A, B)

53/67

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.3

Maximum Weighted Independent Set in
Trees

55 /67

Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights w(v) > 0 for each v € V

Goal Find maximum weight independent set in G

5
(®)

56 /67

Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights w(v) > 0 for each v € V

Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: {B, D}

56 /67

Maximum Weight Independent Set in a Tree

Input Tree T = (V, E) and weights w(v) > 0 for each v € V

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: 77

57 /67

Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as vy, vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on G — v,,) and with v,
(recurse on G — v, — N(v,) & include v,,).

© Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

58 /67

Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as vy, vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on G — v,,) and with v,
(recurse on G — v,, — N(v,) & include v,).

© Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree?

58 /67

Towards a Recursive Solution

For an arbitrary graph G:
© Number vertices as vy, vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on G — v,,) and with v,
(recurse on G — v,, — N(v,) & include v,).

© Saw that if graph G is arbitrary there was no good ordering that resulted in a small
number of subproblems.

What about a tree? Natural candidate for v,, is root r of T?

58 /67

Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum solution to the whole
problem.

Case r € O : Then O contains an optimum solution for each subtree of T hanging at
a child of r.

59 /67

Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum solution to the whole
problem.

Case r € O : Then O contains an optimum solution for each subtree of T hanging at
a child of r.

Case r € O : None of the children of r can be in O. O — {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r.

59 /67

Towards a Recursive Solution
Natural candidate for v, is root r of T? Let O be an optimum solution to the whole

problem.

Case r € O : Then O contains an optimum solution for each subtree of T hanging at
a child of r.

Case r € O : None of the children of r can be in O. O — {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

59 /67

Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum solution to the whole
problem.

Case r € O : Then O contains an optimum solution for each subtree of T hanging at
a child of r.

Case r € O : None of the children of r can be in O. O — {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them?

59 /67

Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum solution to the whole
problem.

Case r € O : Then O contains an optimum solution for each subtree of T hanging at
a child of r.

Case r € O : None of the children of r can be in O. O — {r} contains an optimum
solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them? O(n)

59 /67

Example

60 /67

A Recursive Solution
T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) =

61/67

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(U) — max Zv child of u OPT(V)’
W(U) + Zv grandchild of u OPT(V)

61/67

lterative Algorithm

@ Compute OPT (u) bottom up. To evaluate OPT (u) need to have computed
values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above?

62 /67

lterative Algorithm

@ Compute OPT (u) bottom up. To evaluate OPT (u) need to have computed
values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above? Post-order traversal of
a tree.

62 /67

lterative Algorithm

MIS-Tree(T):
Let vi,Vo,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
ZVJ' ehita of v; MV, >

w(v;) + ZVj grandchild of v; M|v;]
return M[v,] (* Note: v, is the root of T *)

M|v;] = max

63/67

lterative Algorithm

MIS-Tree(T):
Let vi,Vo,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
ZVJ' ehita of v; MV, >

w(v;) + ZVj grandchild of v; M|v;]
return M[v,] (* Note: v, is the root of T *)

M|v;] = max

Space:

63/67

lterative Algorithm

MIS-Tree(T):
Let vi,Vo,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
ZVJ' ehita of v; MV, >

w(v;) + ZVj grandchild of v; M|v;]
return M[v,] (* Note: v, is the root of T *)

M|v;] = max

Space: O(n) to store the value at each node of T
Running time:

63/67

lterative Algorithm

MIS-Tree(T):
Let vi,Vo,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
ZVJ' ehita of v; MV, >

w(v;) + ZVj grandchild of v; M|v;]
return M[v,] (* Note: v, is the root of T *)

M|v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take O(n) time and there
are n evaluations.

63/67

lterative Algorithm

MIS-Tree(T):
Let vi,Vo,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
ZVJ' ehita of v; MV, >

w(v;) + ZVj grandchild of v; M|v;]
return M[v,] (* Note: v, is the root of T *)

M|v;] = max

Space: O(n) to store the value at each node of T
Running time:
@ Naive bound: O(n?) since each M[v;] evaluation may take O(n) time and there
are n evaluations.
@ Better bound: O(n). A value M|[v;j] is accessed only by its parent and grand
parent.

63/67

Example

64 /67

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.4
Dynamic programming and DAGs

66 /67

Takeaway Points

@ Dynamic programming is based on finding a recursive way to solve the problem.
Need a recursion that generates a small number of subproblems.

@ Given a recursive algorithm there is a natural DAG associated with the
subproblems that are generated for given instance; this is the dependency graph.
An iterative algorithm simply evaluates the subproblems in some topological sort of
this DAG.

© The space required to evaluate the answer can be reduced in some cases by a
careful examination of that dependency DAG of the subproblems and keeping only
a subset of the DAG at any time.

67 /67

	Review of dynamic programming and some new problems
	Is in Lk?

	Edit Distance and Sequence Alignment
	Problem definition and background
	Edit distance as alignment
	Edit distance: The algorithm
	Dynamic programming algorithm for edit-distance
	Reducing space for edit distance
	Longest Common Subsequence Problem

	Maximum Weighted Independent Set in Trees
	Dynamic programming and DAGs: Summary

