Algorithms & Models of Computation

CS/ECE 374, Fall 2020

Backtracking and Memoization

Lecture 12 Tuesday, October 6, 2020

LATEXed: September 4, 2020 17:41

Algorithms & Models of Computation CS/ECE 374, Fall 2020

12.1

On different techniques for recursive algorithms

Recursion

Reduction:

Reduce one problem to another

Recursion

A special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction
- **1** Problem instance of size n is reduced to one or more instances of size n-1 or less.
- For termination, problem instances of small size are solved by some other method as base cases.

Recursion in Algorithm Design

- Tail Recursion: problem reduced to a <u>single</u> recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms, etc.
- Divide and Conquer: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem. Examples: Closest pair, deterministic median selection, quick sort.
- Backtracking: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.
- Oynamic Programming: problem reduced to multiple (typically) dependent or overlapping sub-problems. Use memoization to avoid recomputation of common solutions leading to iterative bottom-up algorithm.

Har-Peled (UIUC) CS374 4 Fall 2020 4/43

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

12.2

Search trees and backtracking

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?

The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?

The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?

Strategy: Search tree

Search tree for 5 queens

Backtracking: Informal definition

Recursive search over an implicit tree, where we "backtrack" if certain possibilities do not work.

n queens C++ code

```
generate permutations(int * permut, int row, int n)
  if (row == n) {
    print board( permut, n );
     return:
  for (int val = 1; val \leq n; val ++)
    if (isValid(permut, row, val)) {
       permut[ row 1 = val:
       generate permutations (permut, row + 1, n);
generate permutations(permut, 0, 8);
```

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

12.3

Brute Force Search, Recursion and Backtracking

12.3.1

Naive algorithm for Max Independent Set in a Graph

Maximum Independent Set in a Graph

Definition

Given undirected graph G = (V, E) a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \not\in E$.

Some independent sets in graph above: $\{D\}, \{A, C\}, \{B, E, F\}$

Maximum Independent Set Problem

Input Graph G = (V, E)

Goal Find maximum sized independent set in G

Maximum Weight Independent Set Problem

Input Graph G = (V, E), weights $w(v) \ge 0$ for $v \in V$ Goal Find maximum weight independent set in G

Maximum Weight Independent Set Problem

- No one knows an efficient (polynomial time) algorithm for this problem
- Problem is NP-Complete and it is <u>believed</u> that there is no polynomial time algorithm

Brute-force algorithm:

Try all subsets of vertices.

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

```
\begin{aligned} & \mathsf{MaxIndSet}(G = (V, E)): \\ & \mathit{max} = 0 \\ & \mathsf{for} \ \mathsf{each} \ \mathsf{subset} \ S \subseteq V \ \mathsf{do} \\ & \mathsf{check} \ \mathsf{if} \ S \ \mathsf{is} \ \mathsf{an} \ \mathsf{independent} \ \mathsf{set} \\ & \mathsf{if} \ S \ \mathsf{is} \ \mathsf{an} \ \mathsf{independent} \ \mathsf{set} \ \mathsf{and} \ w(S) > \mathit{max} \ \mathsf{then} \\ & \mathit{max} = w(S) \end{aligned}
```

Running time: suppose G has n vertices and m edges

- \bigcirc 2ⁿ subsets of V
- ② checking each subset S takes O(m) time
- 3 total time is $O(m2^n)$

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

```
\begin{aligned} & \mathsf{MaxIndSet}(G = (V, E)): \\ & \mathit{max} = 0 \\ & \mathsf{for} \ \mathsf{each} \ \mathsf{subset} \ S \subseteq V \ \mathsf{do} \\ & \mathsf{check} \ \mathsf{if} \ S \ \mathsf{is} \ \mathsf{an} \ \mathsf{independent} \ \mathsf{set} \\ & \mathsf{if} \ S \ \mathsf{is} \ \mathsf{an} \ \mathsf{independent} \ \mathsf{set} \ \mathsf{and} \ w(S) > \mathit{max} \ \mathsf{then} \\ & \mathit{max} = w(S) \end{aligned}
```

Running time: suppose G has n vertices and m edges

- 2" subsets of V
- 3 total time is $O(m2^n)$

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

12.3.2

A recursive algorithm for Max Independent Set in a Graph

A Recursive Algorithm

```
Let V = \{v_1, v_2, \dots, v_n\}.
For a vertex u let N(u) be its neighbors.
```

Observation

 v_1 : vertex in the graph

One of the following two cases is true

Case 1 v_1 is in some maximum independent set.

Case 2 v_1 is in no maximum independent set.

We can try both cases to "reduce" the size of the problem

A Recursive Algorithm

```
Let V = \{v_1, v_2, \dots, v_n\}.
```

For a vertex u let N(u) be its neighbors.

Observation

 \mathbf{v}_1 : vertex in the graph.

One of the following two cases is true

Case 1 v_1 is in some maximum independent set.

Case 2 v_1 is in <u>no</u> maximum independent set.

We can try both cases to "reduce" the size of the problem

Removing a vertex (say 5)

Because it is NOT in the independent set

Removing a vertex (say 5)

Because it is NOT in the independent set

Removing a vertex (say 5) and its neighbors

Because it is in the independent set

Removing a vertex (say 5) and its neighbors

Because it is in the independent set

A Recursive Algorithm: The two possibilities

$$G_1=G-v_1$$
 obtained by removing v_1 and incident edges from G $G_2=G-v_1-N(v_1)$ obtained by removing $N(v_1)\cup v_1$ from G

$$extit{MIS}(extbf{\emph{G}}) = \max\{ extit{MIS}(extbf{\emph{G}}_1), extit{MIS}(extbf{\emph{G}}_2) + w(extit{\emph{v}}_1)\}$$

A Recursive Algorithm

```
RecursiveMIS(G):

if G is empty then Output 0

a = \text{RecursiveMIS}(G - v_1)

b = w(v_1) + \text{RecursiveMIS}(G - v_1 - N(v_n))
Output \max(a, b)
```


Running time:

$$T(n) = T(n-1) + T(n-1 - deg(v_1)) + O(1 + deg(v_1))$$

where $deg(v_1)$ is the degree of v_1 . T(0) = T(1) = 1 is base case.

Worst case is when $deg(v_1) = 0$ when the recurrence becomes

$$T(n) = 2T(n-1) + O(1)$$

Solution to this is $T(n) = O(2^n)$.

Backtrack Search via Recursion

- Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem)
- Simple recursive algorithm computes/explores the whole tree blindly in some order.
- Sacktrack search is a way to explore the tree intelligently to prune the search space
 - Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method
 - Memoization to avoid recomputing same problem
 - Stop the recursion at a subproblem if it is clear that there is no need to explore further.
 - Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

12.4

Longest Increasing Subsequence

Sequences

Definition

<u>Sequence</u>: an ordered list a_1, a_2, \ldots, a_n . <u>Length</u> of a sequence is number of elements in the list.

Definition

 a_{i_1}, \ldots, a_{i_k} is a <u>subsequence</u> of a_1, \ldots, a_n if $1 \le i_1 < i_2 < \ldots < i_k \le n$.

Definition

A sequence is <u>increasing</u> if $a_1 < a_2 < \ldots < a_n$. It is <u>non-decreasing</u> if $a_1 \le a_2 \le \ldots \le a_n$. Similarly <u>decreasing</u> and <u>non-increasing</u>.

Example...

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9
- 2 Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2, 7, 9.

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n Goal Find an **increasing subsequence** $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Subsequence: 3, 5, 7, 8

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

- Sequence: 6, 3, 5, 2, 7, 8, 1
- ② Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Subsequence: 3, 5, 7, 8

Naïve Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence B of A do
        if B is increasing and |B| > max then
            max = |B|
        Output max
```

Running time: $O(n2^n)$

 2^n subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

Naïve Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence B of A do
        if B is increasing and |B| > max then
            max = |B|
        Output max
```

Running time: $O(n2^n)$.

 2^n subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

Naïve Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence B of A do
        if B is increasing and |B| > max then
            max = |B|
        Output max
```

Running time: $O(n2^n)$.

 2^n subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A**[1..**n**]):

- ① Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- ② Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A**[1..**n**]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- ② Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A**[1..**n**]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- ② Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(**A**[1..**n**]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- ② Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation

Recursive Approach

LIS_smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

```
LIS_smaller(A[1..n], x):

if (n = 0) then return 0

m = LIS\_smaller(A[1..(n - 1)], x)

if (A[n] < x) then

m = max(m, 1 + LIS\_smaller(A[1..(n - 1)], A[n]))

Output m
```

Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

12.4.1

Running time analysis

```
LIS_smaller(A[1..n], x):

if (n = 0) then return 0

m = LIS\_smaller(A[1..(n - 1)], x)

if (A[n] < x) then

m = max(m, 1 + LIS\_smaller(A[1..(n - 1)], A[n]))
Output m
```

Lemma

LIS_smaller runs in $O(2^n)$ time.

Improvement: From $O(n2^n)$ to $O(2^n)$one can do much better using memoization

Lemma

LIS_smaller runs in $O(2^n)$ time.

Improvement: From $O(n2^n)$ to $O(2^n)$.

....one can do much better using memoization!

Lemma

LIS_smaller runs in $O(2^n)$ time.

Improvement: From $O(n2^n)$ to $O(2^n)$.

....one can do much better using memoization!

THE END

...

(for now)