Algorithms & Models of Computation
CS/ECE 374, Fall 2020

Context Free Languages and
Grammars

Lecture 7
Tuesday, September 15, 2020

ATEXed: September 1, 2020 21:21

Har-Peled (UIUC) Fall 2020 1/64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.1

A fluffy introduction to context free
languages, push down automatas

Har-Peled (UIUC) Fall 2020 2/64

What stack got to do with it?

What's a stack but a second hand memory?

@ DFA/NFA /Regular expressions.
= constant memory computation.

@ Turing machines DFA /NFA + unbounded memory.
= a standard computer/program.

Har-Peled (UIUC) CS374 3 Fall 2020 3/64

What stack got to do with it?

What's a stack but a second hand memory?

@ DFA/NFA /Regular expressions.
= constant memory computation.

@ NFA + stack
= context free grammars (CFG).

© Turing machines DFA /NFA + unbounded memory.
= a standard computer/program.

Har-Peled (UIUC) CS374 3 Fall 2020 3/64

What stack got to do with it?

What's a stack but a second hand memory?

@ DFA/NFA /Regular expressions.
= constant memory computation.
@ NFA + stack
= context free grammars (CFG).

© Turing machines DFA /NFA + unbounded memory.

= a standard computer/program.
= NFA with two stacks.

Har-Peled (UIUC) CS374 3 Fall 2020 3/64

Context Free Languages and Grammars

Programming Language Specification
Parsing

°

°

o Natural language understanding
@ Generative model giving structure
°

Har-Peled (UIUC) CS374 4 Fall 2020 4/64

Programming Languages

<relational-expression>

<shift-expression>

<relational-expression> < <shift-expression>
<relat10nnl-expresslon> > <sh1£t-expresslon>
<relational- on> <= <shift-exp on>
<re1at10na1—expressxon> > <sh;ft-expxessxon>

<additive-expression>
<shift-expression> << <additive-expression>
<shift-expression> >> <additive-expression>

<shift-expression>

<additive-expression> ::= <multiplicative-expression>

| <additive-expression> + <multiplicative-expression>
| <additive-expression> - <multiplicative-expression>
<multiplicative-expression> <cast-expression>
<multiplicative-expression> * <casc-expressmn>

<multiplicati ion> / pression>
<multiplicati ion> % t ion>
<cast- ion> ::= <unary ion

| (<type-name>) <cast-expression>
<unary-expression> <postfix-expression>
++ <unary-expression>
-- <unary- expressxon>
<unary ion
sizeof <unary-expression>
sizeof <type-name>

<postfix-expression> :

<primary-expression>

<post£ix- expressxon> [<expression>]

<postfi: n> ({<assi t-expression>}*
<postfix- expzessxon> . <identifier>
<postfix-expression> -> <identifier>
<postfix-expression> ++

<postfix-expression> --

Har-Peled (UIU

Fall 2020

Natural Language Processing

Har-Peled (UIUC)

English sentences can be described as

(S) = (NP)VP)

(NP) = (CN) | (CN)(PP)
(VP) = (CV) | (CV)(PP)
(PP) = (P)(CN)

(CN) — (AX(N)

(CV) = (V) [(VINP)
(4) = a | the

(N) = boy | girl | flower
(V) = touches | likes | sees
(P) - with

English Sentences

Ezamples
noun-phs verly phrs
—_——
o boy e
< S
articlenomn verb

noun-phrs verb-phrs

N
the boy sces a flower

article nown verb noun-phrs

CS374

Fall 2020

Models of Growth

@ L-systems
@ http://www.kevs3d.co.uk/dev/lsystems/

Har-Peled (UIUC) CS374 7 Fall 2020 7/64

http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

Har-Peled (UIUC) CS374 8 Fall 2020 8/64

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.2
Formal definition of convex-free languages

(CFGs)

Har-Peled (UIUC) Fall 2020 10/64

Context Free Grammar (CFG) Definition

A CFG is a quadruple G = (V, T, P, S)

@ V is a finite set of non-terminal symbols

G:(Variables, Terminals, Productions, Start var)

Har-Peled (UIUC) CS374 11 Fall 2020 11/64

Context Free Grammar (CFG) Definition

A CFG is a quadruple G = (V, T, P, S)
@ V is a finite set of non-terminal symbols

@ T is a finite set of terminal symbols (alphabet)

G:(Variables, Terminals, Productions, Start var)

Har-Peled (UIUC) CS374 11 Fall 2020 11/64

Context Free Grammar (CFG) Definition

A CFG is a quadruple G = (V, T, P, S)
@ V is a finite set of non-terminal symbols
@ T is a finite set of terminal symbols (alphabet)
@ P is a finite set of productions, each of the form

A— o
where A € V and avis a string in (V U T)*.

Formally, P C V x (VU T)*

G:(Variables, Terminals, Productions, Start var)

Fall 2020 11/64

Har-Peled (UIUC) CS374 11

Context Free Grammar (CFG) Definition

A CFG is a quadruple G = (V, T, P, S)
@ V is a finite set of non-terminal symbols
@ T is a finite set of terminal symbols (alphabet)

@ P is a finite set of productions, each of the form

A— o
where A € V and avis a string in (V U T)*.
Formally, P C V x (VU T)*

@ S € V is a start symbol

G:(Variables, Terminals, Productions, Start var)

Har-Peled (UIUC) CS374 11 Fall 2020 11/64

o V ={S5}
e T ={a,b}
e P={S—>e€|al|b]|aSa| bSh}
(abbrev. for S — €,S — a,S — b,S — aSa,S — bSb)

Har-Peled (UIUC) 2 Fall 2020 12 /64

o V ={S5}
e T ={a,b}
e P={S—>e€|al|b]|aSa| bSh}
(abbrev. for S — €,S — a,S — b,S — aSa,S — bSb)

S ~~ aSa ~s abSba ~~ abbSbba ~ abb b bba

Har-Peled (UIUC) 2 Fall 2020 12 /64

o V ={S5}
e T ={a,b}
e P={S—>e€|al|b]|aSa| bSh}
(abbrev. for S — €,S — a,S — b,S — aSa,S — bSb)

S ~~ aSa ~s abSba ~~ abbSbba ~ abb b bba

What strings can S generate like this?

Har-Peled (UIUC) 2 Fall 2020 12 /64

Example formally...

o V ={S5}
e T ={a,b}
e P={S—>e€|al|b]|aSa| bSh}
(abbrev. for S — €,S — a,S — b,S — aSa,S — bSb)

S — e

S — a,
G=|{S}, {a, b}, S—b S

S —» aSa

S — bShH

Har-Peled (UIUC) Fall 2020 13 /64

Palindromes

Madam in Eden I'm Adam

Dog doo? Good God!

Dogma: | am God.

A man, a plan, a canal, Panama

Are we not drawn onward, we few, drawn onward to new era?

Doc, note: | dissent. A fast never prevents a fatness. | diet on cod.

® 6 6 6 6 o o

http://www.palindromelist.net

Har-Peled (UIUC) CS374 14 Fall 2020 14 /64

http://www.palindromelist.net

L ={0"1" | n > 0}

Har-Peled (UIUC) CS374 15 Fall 2020 15 /64

L ={0"1" | n > 0}

S —>e€e]|0S1

Har-Peled (UIUC) CS374 15 Fall 2020 15/ 64

Notation and Convention

Let G = (V, T,P,S) then
e a,b,c,d,...,in T (terminals)
e A,B,C,D,...,in V (non-terminals)
@ U, V,W,Xx,Yy,...in T* for strings of terminals
e a,3,7v,...in(VUT)*
e X, Y, XinVUT

Har-Peled (UIUC) CS374 16 Fall 2020 16 / 64

“Derives’ relation

Formalism for how strings are derived/generated

Definition

Let G = (V,T,P,S) be a CFG. For strings a, ap € (V U T)* we say a; derives
a; denoted by a; ~~»g ay if there exist strings 3,4,4 in (V U T)* such that

o a; = BAS

° ar =6

@ A— ~visin P.

Examples: S ~~ €, S ~ 0S1, 0S1 ~~ 00511, 0S1 ~~ 01.

Har-Peled (UIUC) CS374 17 Fall 2020 17 / 64

“Derives”’ relation continued

For integer k > 0, a; ~* «, inductive defined:
0

e a1 ~’ apif g = oy

Q@ O sk oy if ap ~ ﬁl and ,61 k=1 Q0.
o

Har-Peled (UIUC) CS374 18

Fall 2020 18 /64

“Derives”’ relation continued

Definition
For integer k > 0, a; ~* «, inductive defined:
o a; oy if g = vy

Q@ O sk oy if ap ~ ﬁl and ,61 k=1 Q0.

k

e Alternative definition: oy ~+* a if a; ~*=1 B; and B1 ~

Har-Peled (UIUC) CS374 18 Fall 2020 18 /64

“Derives”’ relation continued

Definition
For integer k > 0, a; ~* «, inductive defined:
o a; oy if g = vy

Q@ O sk oy if ap ~ ﬁl and ,61 k=1 Q0.

e Alternative definition: oy ~+* a if a; ~*=1 B; and B1 ~

~¥ is the reflexive and transitive closure of ~-.

a; ~F ay if ay ~¥ a, for some k.

Examples: S ~¥ ¢, 0S1 ~¥ 0000011111.

Har-Peled (UIUC) CS374 18 Fall 2020 18 /64

Context Free Languages

Definition

The language generated by CFG G = (V, T, P, S) is denoted by L(G) where
L(G)={weT*|S~w}

Har-Peled (UIUC) CS374 19 Fall 2020 19 /64

Context Free Languages

The language generated by CFG G = (V, T, P, S) is denoted by L(G) where
L(G)={weT*|S~w}

Definition
A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G).

Har-Peled (UIUC) CS374 19 Fall 2020 19 /64

L={0"1" | n >0}
S —>e€e]|0S1
L={0"1" | m > n}

L= {w € {(,)}* ‘ w is properly nested string of parenthesis}.

Har-Peled (UIUC) CS374 20 Fall 2020 20 /64

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.3
Converting regular languages into CF'L

Har-Peled (UIUC) 2 Fall 2020 22 /64

Converting regular languages into

M= (Q,%,d,s,A): DFA for regular language L.

Productions

Variables Terminals - % ~ Start var
G:< . {9 > ad(q,a)|ge Qaer} "~
’ ’ U{g—¢clqgeA} ’

Har-Peled (UIUC) CS374 23 Fall 2020 23 /64

Conversion continued...

G =|{A,B,C,D,E}, {a, b},

Har-Peled (UIUC)

CS374

A — aA,A — bA,A — aB,

B — bC,
C — aD, LA
D — bE,

E — aE,E — bE,E — ¢

Fall 2020 24 /64

The result...

For an regular language L, there is a context-free grammar (CF'G) that generates it.

Har-Peled (UIUC) CS374 25 Fall 2020 25 /64

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.4
Some properties of CF'Ls

Har-Peled (UIUC) Fall 2020 27 /64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.4.1
Closure properties of CFLS

Har-Peled (UIUC) Fall 2020 28 /64

Bad news: Canonical non-CFL
L = {a"b"c" | n > 0} is not context-free. \

Proof based on pumping lemma for CFLS. See supplemental for the proof.

Har-Peled (UIUC) CS374 29 Fall 2020 29 /64

More bad news: CFL not closed under intersection

CFLs are not closed under intersection. I

Har-Peled (UIUC) CS374 30 Fall 2020 30/ 64

Closure Properties of CFLS

Gl - (Vla T7 Pla 51) and G2 - (V29 T9 P29 52)
Assumption: V; N V, = (, that is, non-terminals are not shared

Har-Peled (UIUC) CS374 31 Fall 2020 31/64

Closure Properties of CFLS

Gl - (Vla T7 Pla 51) and G2 - (V29 T9 P29 52)
Assumption: V; N V, = (, that is, non-terminals are not shared

CFLs are closed under union. Ly, L, CFLS implies L; U L, is a CFL. \
CFLs are closed under concatenation. Ly, L, CFLS implies LyeL, is a CFL. \

CFLSs are closed under Kleene star.

IfLisaCFL = L* jsa CFL.

Har-Peled (UIUC) CS374 31 Fall 2020 31/64

Closure Properties of CFLS

Union

G1 = (Vl, T, Pl, 51) and G2 = (Vg, T, P2, 52)
Assumption: V; N V, = 0, that is, non-terminals are not shared.

CFLs are closed under union. Ly, L, CFLS implies L; U L, is a CFL. \

Har-Peled (UIUC) CS374 32 Fall 2020 32 /64

Closure Properties of CFLS

Concatenation

CFLs are closed under concatenation. Ly, L, CFLS implies LyeL, is a CFL. \

Har-Peled (UIUC) CS374 33 Fall 2020 33 /64

Closure Properties of CFLS

Stardom (i.e, Kleene star)

CFLSs are closed under Kleene star.
IfLisaCFL = L* jsa CFL.

Har-Peled (UIUC) CS374 34 Fall 2020 34 /64

Exercise

@ Prove that every regular language is context-free using previous closure properties.

@ Prove the set of regular expressions over an alphabet ¥ forms a non-regular
language which is context-free.

Har-Peled (UIUC) CS374 35 Fall 2020 35 /64

Even more bad news: CF'L not closed under complement

CF'Ls are not closed under complement. \

Har-Peled (UIUC) CS374 36 Fall 2020 36 /64

Good news: Closure Properties of CF'LS continued

If Ly is a CFL and L, is regular then Ly N L, is a CFL. \

Har-Peled (UIUC) CS374 37 Fall 2020 37 /64

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.4.2

Parse trees and ambiguity

Har-Peled (UIUC) Fall 2020 39/64

Parse Trees or Derivation Trees

A tree to represent the derivation S ~ w.
@ Rooted tree with root labeled S
@ Non-terminals at each internal node of tree
@ Terminals at leaves

@ Children of internal node indicate how non-terminal was expanded using a
production rule

Har-Peled (UIUC) CS374 40 Fall 2020 40/ 64

Parse Trees or Derivation Trees

A tree to represent the derivation S ~ w.
@ Rooted tree with root labeled S
@ Non-terminals at each internal node of tree
@ Terminals at leaves

@ Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words

Har-Peled (UIUC) CS374 40 Fall 2020 40/ 64

S <«— Aderivation tree for abbaab

/ \ \ (also called “parse tree”)
a S b

VARN
b S a@ s>aShb|bSa|SS|ab|balce
VRN
S S
b £

a

A corresponding derivation of abbaab

S > aSb > abSab > abSSab > abbaSab > abbaab

Har-Peled (UIUC) CS374 41 Fall 2020 41/64

Ambiguity in CFLs

Definition
A CFG G is ambiguous if there is a string w € L(G) with two different parse trees. If
there is no such string then G is unambiguous.

Example: S - S-S |1]|2]|3

S S
¢ TN
LSy S

SR R

3—(2-1) (3-2)—1

Fall 2020 42 /64

Har-Peled (UIUC)

Ambiguity in CFLSs

@ Original grammar: S - S —S|1|2]|3
@ Unambiguous grammar:
S—»>S-C|1|2]3
C—>1|2]3

N

— W

- C
\{ | \ | The grammar forces a parse
corresponding to left-to-right
- C 1 evaluation.
(3-2)-1

Har-Peled (UIUC) CS374 43 Fall 2020 43 /64

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

Har-Peled (UIUC) CS374 44 Fall 2020 44 /64

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

@ There exist inherently ambiguous CFLs.
Example: L = {a"b™ck | n = mor m = k}

Har-Peled (UIUC) CS374 44 Fall 2020 44 /64

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

@ There exist inherently ambiguous CFLs.
Example: L = {a"b™ck | n = mor m = k}

@ Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

Har-Peled (UIUC) CS374 44 Fall 2020 44 /64

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.5

CFGs; Proving a grammar generate a
specific language

Har-Peled (UIUC) Fall 2020 46 /64

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S — €| a| b| aSa | bSb

L(G) = {palindromes} = {w | w = wR}

Har-Peled (UIUC) CS374 47 Fall 2020 47 /64

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S — €| a| b| aSa | bSb

L(G) = {palindromes} = {w | w = wR}

Two directions:
o L(G) C L, thatis, S ~* w then w = wF
o L C L(G), thatis, w = wR then S ~+ w

Har-Peled (UIUC) CS374 47 Fall 2020 47 /64

L(G) C L

Show that if S ~* w then w = wF

By induction on length of derivation, meaning
Forall k > 1, § ~* w implies w = wR

Har-Peled (UIUC) CS374 48

Fall 2020 48 /64

L(G) C L

Show that if S ~* w then w = wF

By induction on length of derivation, meaning
Forall k > 1, § ~* w implies w = wR

o If S~~! wthenw =€orw =aor w=b. Each case w = wf
@ Assume that for all k < n, that if S —* w then w = wR

o Let S ~" w (with n > 1). Wlog w begin with a.
o Then S — aSa ~~*—1 aua where w = aua.
o And S ~~""1 u and hence IH, u = uf.

o Therefore w" = (aua)R = (va)fa = au®a = ava = w.

Har-Peled (UIUC) CS374 Fall 2020 48/64

L C L(G)

Show that if w = w” then S ~ w.

By induction on |w/|
That is, for all k > 0, |w| = k and w = wF implies S ~* w.

Exercise: Fill in proof.

Har-Peled (UIUC) CS374

Fall 2020

49 /64

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

Har-Peled (UIUC) CS374 50 Fall 2020 50 /64

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.6
CFGS normal form

Har-Peled (UIUC) 2 Fall 2020 52 /64

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Har-Peled (UIUC) CS374 53 Fall 2020 53 /64

Normal Forms

Normal forms are a way to restrict form of production rules
Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs
@ Chomsky normal form

@ Greibach normal form

Har-Peled (UIUC) CS374 53 Fall 2020 53 /64

Normal Forms

Chomsky Normal Form:

@ Productions are all of the form A — BC or A — a.
If e € L then S — € is also allowed.

@ Every CFG G can be converted into CNF form via an efficient algorithm
@ Advantage: parse tree of constant degree.

Har-Peled (UIUC) CS374 54 Fall 2020 54 /64

Normal Forms

Chomsky Normal Form:

@ Productions are all of the form A — BC or A — a.
If e € L then S — € is also allowed.

@ Every CFG G can be converted into CNF form via an efficient algorithm
@ Advantage: parse tree of constant degree.

Greibach Normal Form:
@ Only productions of the form A — a3 are allowed.
e All CFLs without € have a grammar in GNF'. Efficient algorithm.

@ Advantage: Every derivation adds exactly one terminal.

Har-Peled (UIUC) CS374 54 Fall 2020 54 /64

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.7

Pushdown automatas

Har-Peled (UIUC) Fall 2020 56 / 64

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDA = Doush DownN Aurematon
= NFA wm smck (LTRQ)
Ly we Derae DPDA Lamen

K"—\ Fxs“[('ri
N4
o gl
b STAC
b X
: q No LT
QEEO AR 3 R

INbT TARE

PDAs and CFGs are equivalent: both generate exactly CFLs.

PDA is a machine-centric view of CFLs.
Har-Peled (UIUC) CS374 Y4 Fall 2020 57/'64

Pushdown automata by example

e =] (e—(
@ e, e — $ Q(h@eﬁ%e :
[,[—€), (— €

Har-Peled (UIUC) Fall 2020 58 /64

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.8
Supplemental: Why a”’b"c" is not CFL

Har-Peled (UIUC) Fall 2020 60 /64

You are bound to repeat yourself...

L={a"b"c" | n > 0}.
@ For the sake of contradiction assume that there exists a grammar:
G a CFG for L.

@ T;: minimal parse tree in G for a'b'c’.

Har-Peled (UIUC) CS374 61 Fall 2020 61 /64

You are bound to repeat yourself...

L={a"b"c" | n > 0}.
@ For the sake of contradiction assume that there exists a grammar:
G a CFG for L.

@ T;: minimal parse tree in G for a'b’c'.
@ h; = height(T;): Length of longest path from root to leaf in T;.
@ For any integer t, there must exist an index j(t), such that hj(t) > t.

@ There an index j, such that h; > <2 % #+ variables in G).

Har-Peled (UIUC) CS374 61 Fall 2020 61 /64

Repetition in the parse tree...

Har-Peled (UIUC) CS374 62 Fall 2020 62 /64

Repetition in the parse tree...

xyzvw = alb/ ci

Har-Peled (UIUC) CS374 62 Fall 2020 62 /64

Repetition in the parse tree...

xyzvw = abd = xy?zv®w € L

Har-Peled (UIUC) CS374 62 Fall 2020 62 /64

Now for some case analysis...

e We know: _
xyzvw = al b/ ¢/
ly| +|v| > 0.
e We proved that 7 = xy2zv2w € L.

Har-Peled (UIUC) CS374 63 Fall 2020 63 /64

Now for some case analysis...

o We know:
xyzvw = al bl ¢l
yl+ vl > 0.
e We proved that 7 = xy?zv?w € L.
e If y contains both a and b, then, 7 = ...a...b...a...b....

Har-Peled (UIUC) CS374 63 Fall 2020 63 /64

Now for some case analysis...

e We know:
xyzvw = alb/ ci
iyl +Iv] > 0.

e We proved that 7 = xy?zv?w € L.

e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

Har-Peled (UIUC) CS374 63 Fall 2020 63 /64

Now for some case analysis...

e We know:
xyzvw = alb/ ci
yl+ vl >0,

e We proved that 7 = xy?zv?w € L.

e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

@ Similarly, not possible that y contains both b and c.

Har-Peled (UIUC) CS374 63 Fall 2020 63 /64

Now for some case analysis...

e We know:
xyzvw = @b/ ¢l
vl + vl >o.

e We proved that 7 = xy?zv?w € L.

e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

@ Similarly, not possible that y contains both b and c.

@ Similarly, not possible that v contains both a and b.

e Similarly, not possible that v contains both b and c.

Har-Peled (UIUC) CS374 63 Fall 2020 63 /64

Now for some case analysis...

e We know:
xyzvw = @b/ ¢l
ly| +|v| > 0.

e We proved that 7 = xy?zv?w € L.

e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

@ Similarly, not possible that y contains both b and c.

@ Similarly, not possible that v contains both a and b.

e Similarly, not possible that v contains both b and c.

e If y contains only as, and v contains only bs, then... #)(T) # #(¢)(T).
Not possible.

Har-Peled (UIUC) CS374 63 Fall 2020 63 /64

Now for some case analysis...

e We know:
xyzvw = alb/ ci
vl + vl >o.

e We proved that 7 = xy?zv?w € L.

e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.

@ Similarly, not possible that y contains both b and c.

@ Similarly, not possible that v contains both a and b.

e Similarly, not possible that v contains both b and c.

e If y contains only as, and v contains only bs, then... #)(T) # #(¢)(T).
Not possible.

@ Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

Har-Peled (UIUC) CS374 63 Fall 2020 63 /64

Now for some case analysis...

e We know:
xyzvw = alb/ ci
vl + vl >o.
e We proved that 7 = xy?zv?w € L.
e If y contains both a and b, then, 7 = ...a...b...a...b....
Impossible, since 7 € L = {a"b"c" | n > 0}.
@ Similarly, not possible that y contains both b and c.
@ Similarly, not possible that v contains both a and b.
e Similarly, not possible that v contains both b and c.
e If y contains only as, and v contains only bs, then... #)(T) # #(¢)(T).
Not possible.
@ Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
@ Must be that 7 ¢ L. A contradiction.

Har-Peled (UIUC) CS374 63 Fall 2020 63 /64

We conclude...

The language L = {a"b"c" | n > 0} is not CFL (i.e., there is no CFG for it).

Har-Peled (UIUC) CS374 64 Fall 2020 64 /64

	A fluffy introduction to context free languages, push down automatas
	Formal definition of convex-free languages (CFGs)
	Converting regular languages into CFL
	Some properties of CFLs
	Closure properties of CFLs
	Parse trees and ambiguity

	CFGs; Proving a grammar generate a specific language
	CFGs normal form
	Pushdown automatas
	Supplemental: Why bluean bluebn bluecn is not CFL

