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What stack got to do with it?
What’s a stack but a second hand memory?

1 DFA/NFA/Regular expressions.
≡ constant memory computation.

2 Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.
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What’s a stack but a second hand memory?

1 DFA/NFA/Regular expressions.
≡ constant memory computation.

2 NFA + stack
≡ context free grammars (CFG).

3 Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.
≡ NFA with two stacks.
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Context Free Languages and Grammars

Programming Language Specification

Parsing

Natural language understanding

Generative model giving structure

. . .
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Programming Languages
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Natural Language Processing
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Models of Growth

L-systems

http://www.kevs3d.co.uk/dev/lsystems/
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Kolam drawing generated by grammar
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THE END
...

(for now)
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7.2
Formal definition of convex-free languages
(CFGs)
FLNAME:7.2.0.0
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Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T )∗.
Formally, P ⊂ V × (V ∪ T )∗.

S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

Har-Peled (UIUC) CS374 11 Fall 2020 11 / 64



Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T )∗.
Formally, P ⊂ V × (V ∪ T )∗.

S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

Har-Peled (UIUC) CS374 11 Fall 2020 11 / 64



Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T )∗.
Formally, P ⊂ V × (V ∪ T )∗.

S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

Har-Peled (UIUC) CS374 11 Fall 2020 11 / 64



Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T )∗.
Formally, P ⊂ V × (V ∪ T )∗.

S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

Har-Peled (UIUC) CS374 11 Fall 2020 11 / 64



Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S  aSa  abSba  abbSbba  abb b bba

What strings can S generate like this?
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Example formally...

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

G =

{S}, {a, b},


S → ε,
S → a,
S → b

S → aSa
S → bSb

 S


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Palindromes

Madam in Eden I’m Adam

Dog doo? Good God!

Dogma: I am God.

A man, a plan, a canal, Panama

Are we not drawn onward, we few, drawn onward to new era?

Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.

http://www.palindromelist.net

Har-Peled (UIUC) CS374 14 Fall 2020 14 / 64

http://www.palindromelist.net


Examples

L = {0n1n | n ≥ 0}

S → ε | 0S1
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Notation and Convention

Let G = (V ,T ,P, S) then

a, b, c, d , . . . , in T (terminals)

A,B,C ,D, . . . , in V (non-terminals)

u, v ,w , x, y , . . . in T ∗ for strings of terminals

α, β, γ, . . . in (V ∪ T )∗

X ,Y ,X in V ∪ T
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“Derives” relation

Formalism for how strings are derived/generated

Definition
Let G = (V ,T ,P, S) be a CFG. For strings α1, α2 ∈ (V ∪ T )∗ we say α1 derives
α2 denoted by α1  G α2 if there exist strings β, γ, δ in (V ∪ T )∗ such that

α1 = βAδ
α2 = βγδ

A→ γ is in P.

Examples: S  ε, S  0S1, 0S1  00S11, 0S1  01.
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“Derives” relation continued

Definition
For integer k ≥ 0, α1  k α2 inductive defined:

α1  0 α2 if α1 = α2

α1  k α2 if α1  β1 and β1  k−1 α2.

Alternative definition: α1  k α2 if α1  k−1 β1 and β1  α2

 ∗ is the reflexive and transitive closure of  .

α1  ∗ α2 if α1  k α2 for some k .

Examples: S  ∗ ε, 0S1  ∗ 0000011111.
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Context Free Languages

Definition
The language generated by CFG G = (V ,T ,P, S) is denoted by L(G ) where
L(G ) = {w ∈ T ∗ | S  ∗ w}.

Definition
A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G ).
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Example

L = {0n1n | n ≥ 0}

S → ε | 0S1

L = {0n1m | m > n}

L =
{
w ∈

{
(, )
}∗ ∣∣∣ w is properly nested string of parenthesis

}
.
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THE END
...

(for now)
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7.3
Converting regular languages into CFL
FLNAME:7.3.0.0
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Converting regular languages into CFL

M = (Q,Σ, δ, s,A): DFA for regular language L.

G =
( Variables︷︸︸︷

Q ,

Terminals︷︸︸︷
Σ ,

Productions︷ ︸︸ ︷
{q → aδ(q, a) | q ∈ Q, a ∈ Σ}

∪ {q → ε | q ∈ A} ,

Start var︷︸︸︷
s

)

CA B D E

a, b a, b

a ab b
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Conversion continued...

CA B D E

a, b a, b

a ab b

G =

{A,B,C ,D,E}, {a, b},


A→ aA,A→ bA,A→ aB,
B → bC ,
C → aD,
D → bE ,

E → aE ,E → bE ,E → ε

 ,A

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The result...

Lemma
For an regular language L, there is a context-free grammar (CFG) that generates it.
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THE END
...

(for now)
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7.4
Some properties of CFLs
FLNAME:7.4.0.0

Har-Peled (UIUC) CS374 27 Fall 2020 27 / 64



Algorithms & Models of Computation
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7.4.1
Closure properties of CFLs
FLNAME:7.4.1.0
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Bad news: Canonical non-CFL

Theorem
L = {anbncn | n ≥ 0} is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for the proof.
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More bad news: CFL not closed under intersection

Theorem
CFLs are not closed under intersection.
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Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.

Theorem
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.
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Closure Properties of CFLs
Union

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared.

Theorem
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Closure Properties of CFLs
Concatenation

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.
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Closure Properties of CFLs
Stardom (i.e, Kleene star)

Theorem
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.
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Exercise

Prove that every regular language is context-free using previous closure properties.

Prove the set of regular expressions over an alphabet Σ forms a non-regular
language which is context-free.

Har-Peled (UIUC) CS374 35 Fall 2020 35 / 64



Even more bad news: CFL not closed under complement

Theorem
CFLs are not closed under complement.
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Good news: Closure Properties of CFLs continued

Theorem
If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
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THE END
...

(for now)
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7.4.2
Parse trees and ambiguity
FLNAME:7.4.2.0
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Parse Trees or Derivation Trees

A tree to represent the derivation S  ∗ w .

Rooted tree with root labeled S
Non-terminals at each internal node of tree

Terminals at leaves

Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words
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Example

S	à aSb | bSa | SS	| ab| ba |	ε

S è aSb è abSab è abSSab è abbaSab è abbaab

A corresponding derivation of abbaab

S

S ba

S ab

S S

b a ε

A derivation tree for abbaab
(also called “parse tree”)
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Ambiguity in CFLs

Definition
A CFG G is ambiguous if there is a string w ∈ L(G ) with two different parse trees. If
there is no such string then G is unambiguous.

Example: S → S − S | 1 | 2 | 3

S

S

S

S– – SS

–S S–S S3

2 1 3 2

1

3–(2–1) (3–2)–1 
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Ambiguity in CFLs

Original grammar: S → S − S | 1 | 2 | 3
Unambiguous grammar:
S → S − C | 1 | 2 | 3
C → 1 | 2 | 3

S

S – C

–S C

3 2

1

(3–2)–1 

The grammar forces a parse 
corresponding to  left-to-right 
evaluation.
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Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G ).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}
Given a grammar G it is undecidable to check whether L(G ) is inherently
ambiguous. No algorithm!
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THE END
...

(for now)
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7.5
CFGs; Proving a grammar generate a
specific language
FLNAME:7.5.0.0
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Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G ) = L?

Example: S → ε | a | b | aSa | bSb

Theorem
L(G ) = {palindromes} = {w | w = wR}

Two directions:

L(G ) ⊆ L, that is, S  ∗ w then w = wR

L ⊆ L(G ), that is, w = wR then S  ∗ w
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L(G) ⊆ L

Show that if S  ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S  ∗k w implies w = wR .

If S  1 w then w = ε or w = a or w = b. Each case w = wR .

Assume that for all k < n, that if S →k w then w = wR

Let S  n w (with n > 1). Wlog w begin with a.

Then S → aSa  k−1 aua where w = aua.
And S  n−1 u and hence IH, u = uR .
Therefore w r = (aua)R = (ua)Ra = auRa = aua = w .
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L ⊆ L(G)

Show that if w = wR then S  ∗ w .

By induction on |w |
That is, for all k ≥ 0, |w | = k and w = wR implies S  ∗ w .

Exercise: Fill in proof.
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Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.
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THE END
...

(for now)
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7.6
CFGs normal form
FLNAME:7.6.0.0
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Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

Chomsky normal form

Greibach normal form
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Normal Forms

Chomsky Normal Form:

Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S → ε is also allowed.

Every CFG G can be converted into CNF form via an efficient algorithm

Advantage: parse tree of constant degree.

Greibach Normal Form:

Only productions of the form A→ aβ are allowed.

All CFLs without ε have a grammar in GNF. Efficient algorithm.

Advantage: Every derivation adds exactly one terminal.
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THE END
...

(for now)
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7.7
Pushdown automatas
FLNAME:7.7.0.0
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Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs.
PDA is a machine-centric view of CFLs.
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Pushdown automata by example

q0 q1 q2

[, ǫ → [ (, ǫ → (

), (→ ǫ], [→ ǫ

ǫ, ǫ → $ ǫ, $ → ǫ
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THE END
...

(for now)
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7.8
Supplemental: Why anbncn is not CFL
FLNAME:7.8.0.0
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You are bound to repeat yourself...

L = {anbncn | n ≥ 0}.
1 For the sake of contradiction assume that there exists a grammar:

G a CFG for L.

2 Ti : minimal parse tree in G for aibic i .

3 hi = height(Ti ): Length of longest path from root to leaf in Ti .

4 For any integer t, there must exist an index j(t), such that hj (t) > t.

5 There an index j , such that hj >
(

2 ∗ # variables in G
)
.
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Repetition in the parse tree...

α

β
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Repetition in the parse tree...

α

β

α

x y z v w

β

xyzvw = ajbjc j
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Repetition in the parse tree...

α

x y z v w

β

α

x w

β

β′

y z v

y v

xyzvw = ajbjc j =⇒ xy 2zv 2w ∈ L
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Now for some case analysis...

We know:
xyzvw = ajbjc j

|y | + |v | > 0.
We proved that τ = xy 2zv 2w ∈ L.
If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
Similarly, not possible that y contains both b and c .
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c .
If y contains only as, and v contains only bs, then... #(a)(τ ) 6= #(c)(τ ).
Not possible.
Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
Must be that τ /∈ L. A contradiction.
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We conclude...

Lemma
The language L = {anbncn | n ≥ 0} is not CFL (i.e., there is no CFG for it).
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