
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

Context Free Languages and
Grammars
Lecture 7
Tuesday, September 15, 2020

LATEXed: September 1, 2020 21:21

Har-Peled (UIUC) CS374 1 Fall 2020 1 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.1
A fluffy introduction to context free
languages, push down automatas
FLNAME:7.1.0.0

Har-Peled (UIUC) CS374 2 Fall 2020 2 / 64

What stack got to do with it?
What’s a stack but a second hand memory?

1 DFA/NFA/Regular expressions.
≡ constant memory computation.

2 Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.

Har-Peled (UIUC) CS374 3 Fall 2020 3 / 64

What stack got to do with it?
What’s a stack but a second hand memory?

1 DFA/NFA/Regular expressions.
≡ constant memory computation.

2 NFA + stack
≡ context free grammars (CFG).

3 Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.

Har-Peled (UIUC) CS374 3 Fall 2020 3 / 64

What stack got to do with it?
What’s a stack but a second hand memory?

1 DFA/NFA/Regular expressions.
≡ constant memory computation.

2 NFA + stack
≡ context free grammars (CFG).

3 Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.
≡ NFA with two stacks.

Har-Peled (UIUC) CS374 3 Fall 2020 3 / 64

Context Free Languages and Grammars

Programming Language Specification

Parsing

Natural language understanding

Generative model giving structure

. . .

Har-Peled (UIUC) CS374 4 Fall 2020 4 / 64

Programming Languages

Har-Peled (UIUC) CS374 5 Fall 2020 5 / 64

Natural Language Processing

Har-Peled (UIUC) CS374 6 Fall 2020 6 / 64

Models of Growth

L-systems

http://www.kevs3d.co.uk/dev/lsystems/

Har-Peled (UIUC) CS374 7 Fall 2020 7 / 64

http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

Har-Peled (UIUC) CS374 8 Fall 2020 8 / 64

THE END
...

(for now)

Har-Peled (UIUC) CS374 9 Fall 2020 9 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.2
Formal definition of convex-free languages
(CFGs)
FLNAME:7.2.0.0

Har-Peled (UIUC) CS374 10 Fall 2020 10 / 64

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

Har-Peled (UIUC) CS374 11 Fall 2020 11 / 64

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

Har-Peled (UIUC) CS374 11 Fall 2020 11 / 64

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

Har-Peled (UIUC) CS374 11 Fall 2020 11 / 64

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

Har-Peled (UIUC) CS374 11 Fall 2020 11 / 64

Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S aSa abSba abbSbba abb b bba

What strings can S generate like this?

Har-Peled (UIUC) CS374 12 Fall 2020 12 / 64

Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S aSa abSba abbSbba abb b bba

What strings can S generate like this?

Har-Peled (UIUC) CS374 12 Fall 2020 12 / 64

Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S aSa abSba abbSbba abb b bba

What strings can S generate like this?

Har-Peled (UIUC) CS374 12 Fall 2020 12 / 64

Example formally...

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

G =

{S}, {a, b},


S → ε,
S → a,
S → b

S → aSa
S → bSb

 S



Har-Peled (UIUC) CS374 13 Fall 2020 13 / 64

Palindromes

Madam in Eden I’m Adam

Dog doo? Good God!

Dogma: I am God.

A man, a plan, a canal, Panama

Are we not drawn onward, we few, drawn onward to new era?

Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.

http://www.palindromelist.net

Har-Peled (UIUC) CS374 14 Fall 2020 14 / 64

http://www.palindromelist.net

Examples

L = {0n1n | n ≥ 0}

S → ε | 0S1

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 64

Examples

L = {0n1n | n ≥ 0}

S → ε | 0S1

Har-Peled (UIUC) CS374 15 Fall 2020 15 / 64

Notation and Convention

Let G = (V ,T ,P, S) then

a, b, c, d , . . . , in T (terminals)

A,B,C ,D, . . . , in V (non-terminals)

u, v ,w , x, y , . . . in T ∗ for strings of terminals

α, β, γ, . . . in (V ∪ T)∗

X ,Y ,X in V ∪ T

Har-Peled (UIUC) CS374 16 Fall 2020 16 / 64

“Derives” relation

Formalism for how strings are derived/generated

Definition
Let G = (V ,T ,P, S) be a CFG. For strings α1, α2 ∈ (V ∪ T)∗ we say α1 derives
α2 denoted by α1 G α2 if there exist strings β, γ, δ in (V ∪ T)∗ such that

α1 = βAδ
α2 = βγδ

A→ γ is in P.

Examples: S ε, S 0S1, 0S1 00S11, 0S1 01.

Har-Peled (UIUC) CS374 17 Fall 2020 17 / 64

“Derives” relation continued

Definition
For integer k ≥ 0, α1 k α2 inductive defined:

α1 0 α2 if α1 = α2

α1 k α2 if α1 β1 and β1 k−1 α2.

Alternative definition: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k .

Examples: S ∗ ε, 0S1 ∗ 0000011111.

Har-Peled (UIUC) CS374 18 Fall 2020 18 / 64

“Derives” relation continued

Definition
For integer k ≥ 0, α1 k α2 inductive defined:

α1 0 α2 if α1 = α2

α1 k α2 if α1 β1 and β1 k−1 α2.

Alternative definition: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k .

Examples: S ∗ ε, 0S1 ∗ 0000011111.

Har-Peled (UIUC) CS374 18 Fall 2020 18 / 64

“Derives” relation continued

Definition
For integer k ≥ 0, α1 k α2 inductive defined:

α1 0 α2 if α1 = α2

α1 k α2 if α1 β1 and β1 k−1 α2.

Alternative definition: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k .

Examples: S ∗ ε, 0S1 ∗ 0000011111.

Har-Peled (UIUC) CS374 18 Fall 2020 18 / 64

Context Free Languages

Definition
The language generated by CFG G = (V ,T ,P, S) is denoted by L(G) where
L(G) = {w ∈ T ∗ | S ∗ w}.

Definition
A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G).

Har-Peled (UIUC) CS374 19 Fall 2020 19 / 64

Context Free Languages

Definition
The language generated by CFG G = (V ,T ,P, S) is denoted by L(G) where
L(G) = {w ∈ T ∗ | S ∗ w}.

Definition
A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G).

Har-Peled (UIUC) CS374 19 Fall 2020 19 / 64

Example

L = {0n1n | n ≥ 0}

S → ε | 0S1

L = {0n1m | m > n}

L =
{
w ∈

{
(,)
}∗ ∣∣∣ w is properly nested string of parenthesis

}
.

Har-Peled (UIUC) CS374 20 Fall 2020 20 / 64

THE END
...

(for now)

Har-Peled (UIUC) CS374 21 Fall 2020 21 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.3
Converting regular languages into CFL
FLNAME:7.3.0.0

Har-Peled (UIUC) CS374 22 Fall 2020 22 / 64

Converting regular languages into CFL

M = (Q,Σ, δ, s,A): DFA for regular language L.

G =
(Variables︷︸︸︷

Q ,

Terminals︷︸︸︷
Σ ,

Productions︷ ︸︸ ︷
{q → aδ(q, a) | q ∈ Q, a ∈ Σ}

∪ {q → ε | q ∈ A} ,

Start var︷︸︸︷
s

)

CA B D E

a, b a, b

a ab b

Har-Peled (UIUC) CS374 23 Fall 2020 23 / 64

Conversion continued...

CA B D E

a, b a, b

a ab b

G =

{A,B,C ,D,E}, {a, b},


A→ aA,A→ bA,A→ aB,
B → bC ,
C → aD,
D → bE ,

E → aE ,E → bE ,E → ε

 ,A


Har-Peled (UIUC) CS374 24 Fall 2020 24 / 64

The result...

Lemma
For an regular language L, there is a context-free grammar (CFG) that generates it.

Har-Peled (UIUC) CS374 25 Fall 2020 25 / 64

THE END
...

(for now)

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.4
Some properties of CFLs
FLNAME:7.4.0.0

Har-Peled (UIUC) CS374 27 Fall 2020 27 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.4.1
Closure properties of CFLs
FLNAME:7.4.1.0

Har-Peled (UIUC) CS374 28 Fall 2020 28 / 64

Bad news: Canonical non-CFL

Theorem
L = {anbncn | n ≥ 0} is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for the proof.

Har-Peled (UIUC) CS374 29 Fall 2020 29 / 64

More bad news: CFL not closed under intersection

Theorem
CFLs are not closed under intersection.

Har-Peled (UIUC) CS374 30 Fall 2020 30 / 64

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.

Theorem
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.

Har-Peled (UIUC) CS374 31 Fall 2020 31 / 64

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.

Theorem
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.

Har-Peled (UIUC) CS374 31 Fall 2020 31 / 64

Closure Properties of CFLs
Union

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared.

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Har-Peled (UIUC) CS374 32 Fall 2020 32 / 64

Closure Properties of CFLs
Concatenation

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.

Har-Peled (UIUC) CS374 33 Fall 2020 33 / 64

Closure Properties of CFLs
Stardom (i.e, Kleene star)

Theorem
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.

Har-Peled (UIUC) CS374 34 Fall 2020 34 / 64

Exercise

Prove that every regular language is context-free using previous closure properties.

Prove the set of regular expressions over an alphabet Σ forms a non-regular
language which is context-free.

Har-Peled (UIUC) CS374 35 Fall 2020 35 / 64

Even more bad news: CFL not closed under complement

Theorem
CFLs are not closed under complement.

Har-Peled (UIUC) CS374 36 Fall 2020 36 / 64

Good news: Closure Properties of CFLs continued

Theorem
If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.

Har-Peled (UIUC) CS374 37 Fall 2020 37 / 64

THE END
...

(for now)

Har-Peled (UIUC) CS374 38 Fall 2020 38 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.4.2
Parse trees and ambiguity
FLNAME:7.4.2.0

Har-Peled (UIUC) CS374 39 Fall 2020 39 / 64

Parse Trees or Derivation Trees

A tree to represent the derivation S ∗ w .

Rooted tree with root labeled S
Non-terminals at each internal node of tree

Terminals at leaves

Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words

Har-Peled (UIUC) CS374 40 Fall 2020 40 / 64

Parse Trees or Derivation Trees

A tree to represent the derivation S ∗ w .

Rooted tree with root labeled S
Non-terminals at each internal node of tree

Terminals at leaves

Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words

Har-Peled (UIUC) CS374 40 Fall 2020 40 / 64

Example

S	à aSb | bSa | SS	| ab| ba |	ε

S è aSb è abSab è abSSab è abbaSab è abbaab

A corresponding derivation of abbaab

S

S ba

S ab

S S

b a ε

A derivation tree for abbaab
(also called “parse tree”)

Har-Peled (UIUC) CS374 41 Fall 2020 41 / 64

Ambiguity in CFLs

Definition
A CFG G is ambiguous if there is a string w ∈ L(G) with two different parse trees. If
there is no such string then G is unambiguous.

Example: S → S − S | 1 | 2 | 3

S

S

S

S– – SS

–S S–S S3

2 1 3 2

1

3–(2–1) (3–2)–1
Har-Peled (UIUC) CS374 42 Fall 2020 42 / 64

Ambiguity in CFLs

Original grammar: S → S − S | 1 | 2 | 3
Unambiguous grammar:
S → S − C | 1 | 2 | 3
C → 1 | 2 | 3

S

S – C

–S C

3 2

1

(3–2)–1

The grammar forces a parse
corresponding to left-to-right
evaluation.

Har-Peled (UIUC) CS374 43 Fall 2020 43 / 64

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}
Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

Har-Peled (UIUC) CS374 44 Fall 2020 44 / 64

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}
Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

Har-Peled (UIUC) CS374 44 Fall 2020 44 / 64

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}
Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

Har-Peled (UIUC) CS374 44 Fall 2020 44 / 64

THE END
...

(for now)

Har-Peled (UIUC) CS374 45 Fall 2020 45 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.5
CFGs; Proving a grammar generate a
specific language
FLNAME:7.5.0.0

Har-Peled (UIUC) CS374 46 Fall 2020 46 / 64

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S → ε | a | b | aSa | bSb

Theorem
L(G) = {palindromes} = {w | w = wR}

Two directions:

L(G) ⊆ L, that is, S ∗ w then w = wR

L ⊆ L(G), that is, w = wR then S ∗ w

Har-Peled (UIUC) CS374 47 Fall 2020 47 / 64

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S → ε | a | b | aSa | bSb

Theorem
L(G) = {palindromes} = {w | w = wR}

Two directions:

L(G) ⊆ L, that is, S ∗ w then w = wR

L ⊆ L(G), that is, w = wR then S ∗ w

Har-Peled (UIUC) CS374 47 Fall 2020 47 / 64

L(G) ⊆ L

Show that if S ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S ∗k w implies w = wR .

If S 1 w then w = ε or w = a or w = b. Each case w = wR .

Assume that for all k < n, that if S →k w then w = wR

Let S n w (with n > 1). Wlog w begin with a.

Then S → aSa k−1 aua where w = aua.
And S n−1 u and hence IH, u = uR .
Therefore w r = (aua)R = (ua)Ra = auRa = aua = w .

Har-Peled (UIUC) CS374 48 Fall 2020 48 / 64

L(G) ⊆ L

Show that if S ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S ∗k w implies w = wR .

If S 1 w then w = ε or w = a or w = b. Each case w = wR .

Assume that for all k < n, that if S →k w then w = wR

Let S n w (with n > 1). Wlog w begin with a.

Then S → aSa k−1 aua where w = aua.
And S n−1 u and hence IH, u = uR .
Therefore w r = (aua)R = (ua)Ra = auRa = aua = w .

Har-Peled (UIUC) CS374 48 Fall 2020 48 / 64

L ⊆ L(G)

Show that if w = wR then S ∗ w .

By induction on |w |
That is, for all k ≥ 0, |w | = k and w = wR implies S ∗ w .

Exercise: Fill in proof.

Har-Peled (UIUC) CS374 49 Fall 2020 49 / 64

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

Har-Peled (UIUC) CS374 50 Fall 2020 50 / 64

THE END
...

(for now)

Har-Peled (UIUC) CS374 51 Fall 2020 51 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.6
CFGs normal form
FLNAME:7.6.0.0

Har-Peled (UIUC) CS374 52 Fall 2020 52 / 64

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

Chomsky normal form

Greibach normal form

Har-Peled (UIUC) CS374 53 Fall 2020 53 / 64

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

Chomsky normal form

Greibach normal form

Har-Peled (UIUC) CS374 53 Fall 2020 53 / 64

Normal Forms

Chomsky Normal Form:

Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S → ε is also allowed.

Every CFG G can be converted into CNF form via an efficient algorithm

Advantage: parse tree of constant degree.

Greibach Normal Form:

Only productions of the form A→ aβ are allowed.

All CFLs without ε have a grammar in GNF. Efficient algorithm.

Advantage: Every derivation adds exactly one terminal.

Har-Peled (UIUC) CS374 54 Fall 2020 54 / 64

Normal Forms

Chomsky Normal Form:

Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S → ε is also allowed.

Every CFG G can be converted into CNF form via an efficient algorithm

Advantage: parse tree of constant degree.

Greibach Normal Form:

Only productions of the form A→ aβ are allowed.

All CFLs without ε have a grammar in GNF. Efficient algorithm.

Advantage: Every derivation adds exactly one terminal.

Har-Peled (UIUC) CS374 54 Fall 2020 54 / 64

THE END
...

(for now)

Har-Peled (UIUC) CS374 55 Fall 2020 55 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.7
Pushdown automatas
FLNAME:7.7.0.0

Har-Peled (UIUC) CS374 56 Fall 2020 56 / 64

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs.
PDA is a machine-centric view of CFLs.

Har-Peled (UIUC) CS374 57 Fall 2020 57 / 64

Pushdown automata by example

q0 q1 q2

[, ǫ → [(, ǫ → (

), (→ ǫ], [→ ǫ

ǫ, ǫ → $ ǫ, $ → ǫ

Har-Peled (UIUC) CS374 58 Fall 2020 58 / 64

THE END
...

(for now)

Har-Peled (UIUC) CS374 59 Fall 2020 59 / 64

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

7.8
Supplemental: Why anbncn is not CFL
FLNAME:7.8.0.0

Har-Peled (UIUC) CS374 60 Fall 2020 60 / 64

You are bound to repeat yourself...

L = {anbncn | n ≥ 0}.
1 For the sake of contradiction assume that there exists a grammar:

G a CFG for L.

2 Ti : minimal parse tree in G for aibic i .

3 hi = height(Ti): Length of longest path from root to leaf in Ti .

4 For any integer t, there must exist an index j(t), such that hj (t) > t.

5 There an index j , such that hj >
(

2 ∗ # variables in G
)
.

Har-Peled (UIUC) CS374 61 Fall 2020 61 / 64

You are bound to repeat yourself...

L = {anbncn | n ≥ 0}.
1 For the sake of contradiction assume that there exists a grammar:

G a CFG for L.

2 Ti : minimal parse tree in G for aibic i .

3 hi = height(Ti): Length of longest path from root to leaf in Ti .

4 For any integer t, there must exist an index j(t), such that hj (t) > t.

5 There an index j , such that hj >
(

2 ∗ # variables in G
)
.

Har-Peled (UIUC) CS374 61 Fall 2020 61 / 64

Repetition in the parse tree...

α

β

Har-Peled (UIUC) CS374 62 Fall 2020 62 / 64

Repetition in the parse tree...

α

β

α

x y z v w

β

xyzvw = ajbjc j

Har-Peled (UIUC) CS374 62 Fall 2020 62 / 64

Repetition in the parse tree...

α

x y z v w

β

α

x w

β

β′

y z v

y v

xyzvw = ajbjc j =⇒ xy 2zv 2w ∈ L

Har-Peled (UIUC) CS374 62 Fall 2020 62 / 64

Now for some case analysis...

We know:
xyzvw = ajbjc j

|y | + |v | > 0.
We proved that τ = xy 2zv 2w ∈ L.
If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
Similarly, not possible that y contains both b and c .
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c .
If y contains only as, and v contains only bs, then... #(a)(τ) 6= #(c)(τ).
Not possible.
Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
Must be that τ /∈ L. A contradiction.

Har-Peled (UIUC) CS374 63 Fall 2020 63 / 64

Now for some case analysis...

We know:
xyzvw = ajbjc j

|y | + |v | > 0.
We proved that τ = xy 2zv 2w ∈ L.
If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
Similarly, not possible that y contains both b and c .
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c .
If y contains only as, and v contains only bs, then... #(a)(τ) 6= #(c)(τ).
Not possible.
Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
Must be that τ /∈ L. A contradiction.

Har-Peled (UIUC) CS374 63 Fall 2020 63 / 64

Now for some case analysis...

We know:
xyzvw = ajbjc j

|y | + |v | > 0.
We proved that τ = xy 2zv 2w ∈ L.
If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
Similarly, not possible that y contains both b and c .
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c .
If y contains only as, and v contains only bs, then... #(a)(τ) 6= #(c)(τ).
Not possible.
Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
Must be that τ /∈ L. A contradiction.

Har-Peled (UIUC) CS374 63 Fall 2020 63 / 64

Now for some case analysis...

We know:
xyzvw = ajbjc j

|y | + |v | > 0.
We proved that τ = xy 2zv 2w ∈ L.
If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
Similarly, not possible that y contains both b and c .
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c .
If y contains only as, and v contains only bs, then... #(a)(τ) 6= #(c)(τ).
Not possible.
Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
Must be that τ /∈ L. A contradiction.

Har-Peled (UIUC) CS374 63 Fall 2020 63 / 64

Now for some case analysis...

We know:
xyzvw = ajbjc j

|y | + |v | > 0.
We proved that τ = xy 2zv 2w ∈ L.
If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
Similarly, not possible that y contains both b and c .
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c .
If y contains only as, and v contains only bs, then... #(a)(τ) 6= #(c)(τ).
Not possible.
Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
Must be that τ /∈ L. A contradiction.

Har-Peled (UIUC) CS374 63 Fall 2020 63 / 64

Now for some case analysis...

We know:
xyzvw = ajbjc j

|y | + |v | > 0.
We proved that τ = xy 2zv 2w ∈ L.
If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
Similarly, not possible that y contains both b and c .
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c .
If y contains only as, and v contains only bs, then... #(a)(τ) 6= #(c)(τ).
Not possible.
Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
Must be that τ /∈ L. A contradiction.

Har-Peled (UIUC) CS374 63 Fall 2020 63 / 64

Now for some case analysis...

We know:
xyzvw = ajbjc j

|y | + |v | > 0.
We proved that τ = xy 2zv 2w ∈ L.
If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
Similarly, not possible that y contains both b and c .
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c .
If y contains only as, and v contains only bs, then... #(a)(τ) 6= #(c)(τ).
Not possible.
Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
Must be that τ /∈ L. A contradiction.

Har-Peled (UIUC) CS374 63 Fall 2020 63 / 64

Now for some case analysis...

We know:
xyzvw = ajbjc j

|y | + |v | > 0.
We proved that τ = xy 2zv 2w ∈ L.
If y contains both a and b, then, τ = ...a...b...a...b....
Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
Similarly, not possible that y contains both b and c .
Similarly, not possible that v contains both a and b.
Similarly, not possible that v contains both b and c .
If y contains only as, and v contains only bs, then... #(a)(τ) 6= #(c)(τ).
Not possible.
Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.
Must be that τ /∈ L. A contradiction.

Har-Peled (UIUC) CS374 63 Fall 2020 63 / 64

We conclude...

Lemma
The language L = {anbncn | n ≥ 0} is not CFL (i.e., there is no CFG for it).

Har-Peled (UIUC) CS374 64 Fall 2020 64 / 64

	A fluffy introduction to context free languages, push down automatas
	Formal definition of convex-free languages (CFGs)
	Converting regular languages into CFL
	Some properties of CFLs
	Closure properties of CFLs
	Parse trees and ambiguity

	CFGs; Proving a grammar generate a specific language
	CFGs normal form
	Pushdown automatas
	Supplemental: Why bluean bluebn bluecn is not CFL

