Algorithms & Models of Computation CS/ECE 374, Fall 2020

Regular Languages and Expressions

Lecture 2 Thursday, August 27, 2020

LATEXed: September 1, 2020 21:18

Algorithms & Models of Computation CS/ECE 374, Fall 2020

2.1

Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **1** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- ① If L_1 , L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- o If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- \bigcirc If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **1** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- \bigcirc If L_1, L_2 are regular then L_1L_2 is regular.
- o If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- \bigcirc If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **1** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- **1** If L_1 , L_2 are regular then L_1L_2 is regular.
- o If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- \bigcirc If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **1** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- **1** If L_1, L_2 are regular then L_1L_2 is regular.
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot * operator name is **Kleene star**.
- \bigcirc If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **1** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- **1** If L_1, L_2 are regular then L_1L_2 is regular.
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot * operator name is **Kleene star**.
- If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Har-Peled (UIUC) CS374 3 Fall 2020 3/2

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **1** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- **1** If L_1, L_2 are regular then L_1L_2 is regular.
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot * operator name is **Kleene star**.
- If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

More Examples

- $\{w \mid w \text{ is a keyword in Python program}\}$
- {w | w is a valid date of the form mm/dd/yy}
- {w | w describes a valid Roman numeral}{I, II, III, IV, V, VI, VII, VIII, IX, X, XI, ...}.
- $\{w \mid w \text{ contains "CS374" as a substring}\}.$

- **Q** $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- ② $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- **3** $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- **5** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- **1** $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_6 is regular. T/F?
- \bullet $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. L_7 \text{ is regular. T/F?}$
- **1** L₈ = $\{0^i \mid i \text{ is divisible by 2, 3, but not 5}\}$. L₈ is regular. T/F?
- $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- **10** $L_{10} = \{ w \in \{0,1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

2.1.1

Regular Languages: Review questions

- **1** $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- ② $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- **1** $L_3 = \{0^{2i} \mid i = 0, 1, ..., \infty\}$. The language L_3 is regular. T/F?
- lacksquare $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- **3** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- \bullet $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F?
- \bullet $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. $L_8 \text{ is regular. } T/F?$
- ① $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?

- **1** $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- ② $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?

- **1** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- **1** $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. $L_6 \text{ is regular. } T/F?$
- \bullet $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. L_7 \text{ is regular. T/F?}$
- ① $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- ① $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?

- **1** $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- ② $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- **3** $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- **1** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- \bullet $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_6 is regular. T/F?
- \bullet $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. L_7 \text{ is regular. T/F?}$
- ① $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- ① $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?

- \bullet $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- **3** $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- \bullet $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F?
- $m{O}$ $m{L}_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. \ m{L}_7 \text{ is regular. T/F?}$
- ① $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- ① $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- $m{Q}$ $m{L}_{10} = \{ m{w} \in \{0,1\}^* \mid m{w} \text{ has at most 374 1s} \}$. $m{L}_{10}$ is regular. T/F?

- \bullet $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- \bullet $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- **5** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- $m{O}$ $m{L}_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. \ m{L}_7 \text{ is regular. T/F?}$
- ① $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- ① $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- $m{\omega} \ m{L}_{10} = \{ m{w} \in \{0,1\}^* \mid m{w} \ \text{has at most 374 1s} \}. \ m{L}_{10} \ \text{is regular. T/F?}$

- \bullet $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- \bullet $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- **1** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- **1** $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_6 is regular. T/F?
- \bullet $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. L_7 \text{ is regular. T/F?}$
- ① $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- ① $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?

- \bullet $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- ② $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- **3** $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- **5** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- **1** $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. $L_6 \text{ is regular. T/F?}$
- $m{O}$ $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. L_7 \text{ is regular. T/F?}$
- ① $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F?
- ① $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- $m{0}$ $m{L}_{10} = \{ m{w} \in \{0,1\}^* \mid m{w} \text{ has at most 374 1s} \}. \ m{L}_{10} \text{ is regular. T/F?}$

- \bullet $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- **3** $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- **5** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- **1** $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. $L_6 \text{ is regular. T/F?}$
- \bullet $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. L_7 \text{ is regular. T/F?}$
- **1** $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. $L_8 \text{ is regular. } T/F?$
- ① $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- $m{\omega} \ m{L}_{10} = \{ m{w} \in \{0,1\}^* \mid m{w} \ \text{has at most 374 1s} \}. \ m{L}_{10} \ \text{is regular. T/F?}$

- \bullet $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- **3** $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- **5** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- **1** $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. $L_6 \text{ is regular. T/F?}$
- \bullet $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. L_7 \text{ is regular. T/F?}$
- **1** $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. $L_8 \text{ is regular. } T/F?$
- $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- $m{Q}$ $m{L}_{10} = \{ m{w} \in \{0,1\}^* \mid m{w} \text{ has at most 374 1s} \}$. $m{L}_{10}$ is regular. T/F?

- \bullet $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F?
- ② $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F?
- **3** $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F?
- $L_4 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_4 is regular. T/F?
- **5** $L_5 = \{0^i \mid i \text{ is not divisible by 17}\}$. L_5 is regular. T/F?
- **1** $L_6 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. $L_6 \text{ is regular. T/F?}$
- \bullet $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}. L_7 \text{ is regular. T/F?}$
- **1** L₈ = $\{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L₈ is regular. T/F?
- $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F?
- **1** $L_{10} = \{ w \in \{0,1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

2.2 Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him.

Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- ∅ denotes the language ∅
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language {a}.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- ullet (r_1+r_2) denotes the language $extit{$R_1$} \cup extit{$R_2$}$
- $(r_1 \cdot r_2) = r_1 \cdot r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*

Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- ∅ denotes the language ∅
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language {a}.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- ullet $(\mathsf{r}_1+\mathsf{r}_2)$ denotes the language $extbf{\textit{R}}_1\cup extbf{\textit{R}}_2$
- $(r_1 \bullet r_2) = r_1 \bullet r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages

```
\emptyset regular \{\epsilon\} regular \{a\} regular for a\in\Sigma R_1\cup R_2 regular if both are R_1R_2 regular if both are R^* is regular if R is
```

Regular Expressions

```
\emptyset denotes \emptyset

\epsilon denotes \{\epsilon\}

a denote \{a\}

\mathsf{r}_1 + \mathsf{r}_2 denotes R_1 \cup R_2

\mathsf{r}_1 \bullet \mathsf{r}_2 denotes R_1 R_2

\mathsf{r}^* denote R^*
```

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $\boldsymbol{L}(r_1) = \boldsymbol{L}(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!

 Example: (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

Notation and Parenthesis

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to "understand" L(r) (say by giving an English description)

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to "understand" L(r) (say by giving an English description)

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

2.2.1

Some examples of regular expressions

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's

```
one answer: 0^* + (0^*10^*10^*)^*
```

- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's
 one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's
 one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

Bit strings with odd number of 0s and 1s

The regular expression is

$$ig(00+11ig)^*(01+10ig) \ ig(00+11+(01+10)(00+11)^*(01+10)ig)^*$$

(Solved using techniques to be presented in the following lectures...)

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

2.2.2

An example of a non-regular language

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem

```
L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}
The language L is not a regular language.
```

How do we prove it?

Other questions

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is $\overline{R_1}$ (complement of R_1) regular?

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem

$$L = \{0^{n}1^{n} \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

The language L is **not** a regular language.

How do we prove it?

Other questions

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is $\overline{R_1}$ (complement of R_1) regular?

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem

$$L = \{0^{n}1^{n} \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

The language L is **not** a regular language.

How do we prove it?

Other questions

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is $\overline{R_1}$ (complement of R_1) regular?

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem

$$L = \{0^{n}1^{n} \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

The language L is **not** a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is $\overline{R_1}$ (complement of R_1) regular?

A sketchy proof

Theorem

 $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

The language L is not a regular language.