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Alphabet

An alphabet is a finite set of symbols.
Examples of alphabets:

Σ = {0, 1},

Σ = {a, b, c, . . . , z},

ASCII.

UTF8.

Σ = {〈moveforward〉, 〈moveback〉}
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String Definitions

Definition
1 A string/word over Σ is a finite sequence of symbols over Σ. For example,

‘0101001’, ‘string ’, ‘〈moveback〉〈rotate90〉’
2 ε is the empty string.

3 The length of a string w (denoted by |w |) is the number of symbols in w . For
example, |101| = 3, |ε| = 0

4 For integer n ≥ 0, Σn is set of all strings over Σ of length n. Σ∗ is the set of all
strings over Σ.
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Inductive/recursive definition of strings

Formal definition of a string:

ε is a string of length 0

ax is a string if a ∈ Σ and x is a string. The length of ax is 1 + |x|
The above definition helps prove statements rigorously via induction.

Alternative recursive definition useful in some proofs: xa is a string if a ∈ Σ and x
is a string. The length of xa is 1 + |x|
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Convention

a, b, c, . . . denote elements of Σ

w , x, y , z, . . . denote strings

A,B,C , . . . denote sets of strings
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Much ado about nothing

ε is a string containing no symbols. It is not a set

{ε} is a set containing one string: the empty string. It is a set, not a string.

∅ is the empty set. It contains no strings.

{∅} is a set containing one element, which itself is a set that contains no elements.
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Concatenation and properties

If x and y are strings then xy denotes their concatenation.

concatenation defined recursively :

xy = y if x = ε
xy = a(wy) if x = aw

xy sometimes written as x·y .

concatenation is associative: (uv)w = u(vw)
hence write uvw ≡ (uv)w = u(vw)

not commutative: uv not necessarily equal to vu
The identity element is the empty string ε:

εu = uε = u.
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Substrings, prefix, suffix

Definition
v is substring of w ⇐⇒ there exist strings x, y such that w = xvy .

If x = ε then v is a prefix of w
If y = ε then v is a suffix of w
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String exponents

Definition
If w is a string then wn is defined inductively as follows:
wn = ε if n = 0
wn = wwn−1 if n > 0

Example: (blah)4 = blahblahblahblah.
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Set Concatenation

Definition
Given two sets X and Y of strings (over some common alphabet Σ) the
concatenation of X and Y is

XY = {xy | x ∈ X , y ∈ Y }
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Set Concatenation

Definition
Given two sets X and Y of strings (over some common alphabet Σ) the
concatenation of X and Y is

XY = {xy | x ∈ X , y ∈ Y }

Example

X = {fido, rover , spot},
Y = {fluffy , tabby}
=⇒
XY = {fidofluffy , fidotabby , roverfluffy , . . .}.
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Σ∗ and languages

Definition
1 Σn is the set of all strings of length n. Defined inductively:

Σn = {ε} if n = 0
Σn = ΣΣn−1 if n > 0

2 Σ∗ = ∪n≥0Σn is the set of all finite length strings

3 Σ+ = ∪n≥1Σn is the set of non-empty strings.

Definition
A language L is a set of strings over Σ. In other words L ⊆ Σ∗.
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Exercise

Answer the following questions taking Σ = {0, 1}.
1 What is Σ0?

2 How many elements are there in Σ3?

3 How many elements are there in Σn?

4 What is the length of the longest string in Σ?

5 Does Σ∗ have strings of infinite length?

6 If |u| = 2 and |v | = 3 then what is |u·v |?
7 Let u be an arbitrary string in Σ∗. What is εu? What is uε?

8 Is uv = vu for every u, v ∈ Σ∗?

9 Is (uv)w = u(vw) for every u, v ,w ∈ Σ∗?
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THE END
...

(for now)
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THE END
...

(for now)
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Countable sets

Definition
A set X is countable, if its elements can be counted.
There exists an injective mapping from X to natural numbers N = {1, 2, 3, . . .}.

Example

All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example

N× N = {(i , j) | i , j ∈ N} is countable.

: Proof: f (i , j) = 2i 3j .
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N× N is countable
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N× N is countable
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Canonical order and countability of strings

Definition
A set X is countably infinite (countable and infinite) if there is a bijection f between
the natural numbers and X .

Alternatively: X is countably infinite if X is an infinite set and there enumeration of
elements of X .
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The set of all strings is countable

Theorem
Σ∗ is countable for any finite Σ.

Enumerate strings in order of increasing length and for each given length enumerate
strings in dictionary order (based on some fixed ordering of Σ).

Example: {0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . .}.
{a, b, c}∗ = {ε, a, b, c, aa, ab, ac, ba, bb, bc, . . .}
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Exercise I

Question: Is Σ∗ × Σ∗ = {(x, y) | x, y ∈ Σ∗} countable?

Question: Is Σ∗ × Σ∗ × Σ∗ = {(x, y , z) | x, y , x ∈ Σ∗} countable?
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Exercise II

Answer the following questions taking Σ = {0, 1}.
1 Is a finite set countable?

2 X is countable, and the set Y ⊆ X , then is the set Y countable?

3 If X and Y are countable, is X \ Y countable?

4 Are all infinite sets countably infinite?

5 If Xi is a countable infinite set, for i = 1, . . . , 700, is ∪iXi countable infinite?

6 If Xi is a countable infinite set, for i = 1, . . . ,, is ∪iXi countable infinite?

7 Let X be a countable infinite set, and consider its power set

2X = {Y | Y ⊆ x} .

The statement “the set 2X is countable” is correct?
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THE END
...

(for now)
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Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition
The reverse wR of a string w is defined as follows:

wR = ε if w = ε

wR = xRa if w = ax for some a ∈ Σ and string x

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Example: (dog·cat)R = (cat)R·(dog)R = tacgod .
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Principle of mathematical induction

Induction is a way to prove statements of the form ∀n ≥ 0,P(n) where P(n) is a
statement that holds for integer n.

Example: Prove that
∑n

i=0 i = n(n + 1)/2 for all n.

Induction template:

Base case: Prove P(0)

Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n)
holds for any n ≤ k .

Induction Step: Prove that P(n) holds, for n = k + 1.
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Structured induction

1 Unlike simple cases we are working with...

2 ...induction proofs also work for more complicated “structures”.

3 Such as strings, tuples of strings, graphs etc.

4 See class notes on induction for details.
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Proving the theorem

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof: by induction.
On what?? |uv | = |u| + |v |?
|u|?
|v |?

What does it mean “induction on |u|”?
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1.3.1: Three proofs by induction
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1.3.1.1:Induction on |u|
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By induction on |u|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| means that we are proving the following.
Base case: Let u be an arbitrary string of length 0. u = ε since there is only one such
string. Then
(uv)R = (εv)R = vR = vRε = vRεR = vRuR

Induction hypothesis: ∀n ≥ 0, for any string u of length n:
For all strings v ∈ Σ∗, (uv)R = vRuR .

No assumption about v , hence statement holds for all v ∈ Σ∗.
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Inductive step

Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.
Since |u| = n > 0 we have u = ay for some string y with |y | < n and a ∈ Σ.
Then

(uv)R = ((ay)v)R

= (a(yv))R

= (yv)RaR

= (vRyR)aR

= vR(yRaR)

= vR(ay)R

= vRuR
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1.3.1.2:A failed attempt: Induction on |v |
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Induction on |v|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR .

Base case: Let v be an arbitrary string of length 0. v = ε since there is only one such
string. Then

(uv)R = (uε)R = uR = εuR = εRuR = vRuR
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Inductive step

Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds
for all strings w of length < n.

Since |v | = n > 0 we have v = ay for some string y with |y | < n and a ∈ Σ.

Then

(uv)R = (u(ay))R

= ((ua)y)R

= yR(ua)R

= ??

Cannot simplify (ua)R using inductive hypothesis. Can simplify if we extend base case
to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!
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1.3.1.3:Induction on |u| + |v |
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Induction on |u| + |v|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR .

Proof by induction on |u| + |v | means that we are proving the following.
Induction hypothesis: ∀n ≥ 0, for any u, v ∈ Σ∗ with |u| + |v | ≤ n,
(uv)R = vRuR .

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v | = 0. Implies
u, v = ε.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v | = n.
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THE END
...

(for now)
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Algorithms & Models of Computation
CS/ECE 374, Fall 2020

1.4
Languages
FLNAME:1.4.0.0
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Languages

Definition
A language L is a set of strings over Σ. In other words L ⊆ Σ∗.

Standard set operations apply to languages.

For languages A,B the concatenation of A,B is AB = {xy | x ∈ A, y ∈ B}.
For languages A,B, their union is A ∪ B, intersection is A ∩ B, and difference is
A \ B (also written as A− B).

For language A ⊆ Σ∗ the complement of A is Ā = Σ∗ \ A.
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Exponentiation, Kleene star etc

Definition
For a language L ⊆ Σ∗ and n ∈ N, define Ln inductively as follows.

Ln =

{
{ε} if n = 0
L·(Ln−1) if n > 0

And define L∗ = ∪n≥0Ln, and L+ = ∪n≥1Ln
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Exercise

Problem
Answer the following questions taking A,B ⊆ {0, 1}∗.

1 Is ε = {ε}? Is ∅ = {ε}?
2 What is ∅·A? What is A·∅?
3 What is {ε}·A? And A·{ε}?
4 If |A| = 2 and |B| = 3, what is |A·B|?
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Exercise

Problem
Consider languages over Σ = {0, 1}.

1 What is ∅0?

2 If |L| = 2, then what is |L4|?
3 What is ∅∗, {ε}∗, ε∗?

4 For what L is L∗ finite?

5 What is ∅+, {ε}+, ε+?
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Languages and Computation

What are we interested in computing? Mostly functions.

Informal definition: An algorithm A computes a function f : Σ∗ → Σ∗ if for all
w ∈ Σ∗ the algorithm A on input w terminates in a finite number of steps and
outputs f (w).

Examples of functions:

Numerical functions: length, addition, multiplication, division etc

Given graph G and s, t find shortest paths from s to t
Given program M check if M halts on empty input

Posts Correspondence problem
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Languages and Computation

Definition
A function f over Σ∗ is a boolean if f : Σ∗ → {0, 1}.

Observation: There is a bijection between boolean functions and languages.

Given boolean function f : Σ∗ → {0, 1} define language
Lf = {w ∈ Σ∗ | f (w) = 1}
Given language L ⊆ Σ∗ define boolean function f : Σ∗ → {0, 1} as follows:
f (w) = 1 if w ∈ L and f (w) = 0 otherwise.
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Language recognition problem

Definition
For a language L ⊆ Σ∗ the language recognition problem associate with L is the
following: given w ∈ Σ∗, is w ∈ L?

Equivalent to the problem of “computing” the function fL.

Language recognition is same as boolean function computation

How difficult is a function f to compute? How difficult is the recognizing Lf ?

Why two different views? Helpful in understanding different aspects?
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How many languages are there?
The answer my friend is blowing in the slides.

Recall:

Definition
An set X is countable if there is a bijection f between the natural numbers and A.

Theorem
Σ∗ is countable for every finite Σ.

The set of all languages is P(Σ∗) the power set of Σ∗

Theorem (Cantor)

P(Σ∗) is not countable for any finite Σ.
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Cantor’s diagonalization argument

Theorem (Cantor)

P(N) is not countable.

Suppose P(N) is countable infinite. Let S1, S2, . . . , be an enumeration of all
subsets of numbers.

Let D be the following diagonal subset of numbers.

D = {i | i 6∈ Si}

Since D is a set of numbers, by assumption, D = Sj for some j .
Question: Is j ∈ D?
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Consequences for Computation

How many C programs are there? The set of C programs is countable since each
of them can be represented as a string over a finite alphabet.

How many languages are there? Uncountably many!

Hence some (in fact almost all!) languages/boolean functions do not have any C
program to recognize them.

Questions:

Maybe interesting languages/functions have C programs and hence computable.
Only uninteresting languors uncomputable?

Why should C programs be the definition of computability?

Ok, there are difficult problems/languages. what languages are computable and
which have efficient algorithms?
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Easy languages

Definition
A language L ⊆ Σ∗ is finite if |L| = n for some integer n.

Exercise: Prove the following.

Theorem
The set of all finite languages is countable.
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THE END
...

(for now)
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1.5
Overview of whats coming on finite
automata/complexity
FLNAME:1.5.0.0

Har-Peled (UIUC) CS374 54 Fall 2020 54 / 56



Languages: easiest, easy, hard, really hard, really really hard

1 Finite languages.
2 Regular languages.

1 Regular expressions.
2 DFA: Deterministic finite automata.
3 NFA: Non-deterministic finite automata.
4 Languages that are not regular.

3 Context free languages (stack).

4 Turing machines: Decidable languages.

5 TM Undecidable languages (halting theorem).

6 TM Unrecognizable languages.
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THE END
...

(for now)
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