Algorithms & Models of Computation

CS/ECE 374, Fall 2020

24.4.2

The consistency of execution

The variables of φ

Variables:

```
\langle q_j, b_j, q'_j, b'_j, d_j \rangle: jth instruction of M
I(j, i): Instruction j was issued at time i.
H(h, i): The head is at location h at time i.
T(c, h, i): The tape at location h at time h stored the character h.
```

φ_1 : The input is encoded correctly

 φ_1 asserts (is true iff) the variables are set T/F indicating that M starts in state q_0 at time 0 with tape contents containing x followed by blanks. Let $x = x_1 x_2 \dots x_n$

$$arphi_1=egin{array}{ll} S(q_0,0) & // ext{ state at time 0 is q_0} \ & \bigwedge_{h=1}^n T(x_h,h,0) & // ext{ at time 0 cells 1 to n have value x_1 to x_n} \ & \bigwedge_{h=n+1}^{p(n)} T(\sqcup,h,0) & // ext{ all remaining cells are blank} \ & \wedge H(1,0) & // ext{ The head is at time 0 at start of tape} \end{array}$$

 φ_2 : **M** is in exactly one state at any point in time

 φ_2 asserts **M** in exactly one state at any time **i**:

$$arphi_2 = igwedge_{i=0}^{oldsymbol{p}(|oldsymbol{s}|)} \left(\oplus \left(oldsymbol{S}(oldsymbol{q}_0, oldsymbol{i}), oldsymbol{S}(oldsymbol{q}_1, oldsymbol{i}), \dots, oldsymbol{S}(oldsymbol{q}_{|Q|}, oldsymbol{i})
ight)
ight)$$

Variables:

 $\left\langle oldsymbol{q_j}, oldsymbol{b_j}, oldsymbol{q_j'}, oldsymbol{b_j'}, oldsymbol{d_j} \right
angle$: $oldsymbol{j}$ th instruction of $oldsymbol{M}$

I(j, i): Instruction j was issued at time i.

H(h, i): The head is at location h at time i.

$arphi_3$: Each tape cell holds a unique symbol at any time

 $arphi_3$ asserts that each tape cell holds a unique symbol at any given time.

$$\varphi_3 = \bigwedge_{i=0}^{p(|x|)} \bigwedge_{h=1}^{p(|x|)} \bigoplus (T(b_1, h, i), T(b_2, h, i), \ldots, T(b_{|\Gamma|}, h, i))$$

For each time i and for each cell position h exactly one symbol $b \in \Gamma$ at cell position h at time i

Variables:

$$\langle q_j, b_j, q'_j, b'_j, d_j \rangle$$
: **j**th instruction of **M**

I(j, i): Instruction j was issued at time i.

H(h, i): The head is at location h at time i.

 $arphi_4$: tape head of $oldsymbol{M}$ is in exactly one position at any time $oldsymbol{i}$

 $arphi_4$ asserts that the read/write head of $oldsymbol{M}$ is in exactly one position at any time $oldsymbol{i}$

$$arphi_4 = \bigwedge_{i=0}^{oldsymbol{p}(|x|)} (\oplus (oldsymbol{H}(1,i),oldsymbol{H}(2,i),\ldots,oldsymbol{H}(oldsymbol{p}(|x|),oldsymbol{i})))$$

Variables:

 $\left\langle oldsymbol{q}_{j},oldsymbol{b}_{j},oldsymbol{q}_{j}',oldsymbol{b}_{j}',oldsymbol{d}_{j}'
ight
angle :$ $oldsymbol{j}$ th instruction of $oldsymbol{M}$

I(j, i): Instruction j was issued at time i.

H(h, i): The head is at location h at time i.

φ_5 : **M** accepts the input

 φ_5 asserts that **M** accepts

- \triangleright Let q_a be unique accept state of M
- ightharpoonup without loss of generality assume M runs all p(|x|) steps

$$\varphi_5 = S(q_a, p(|x|))$$

State at time p(|x|) is q_a the accept state.

If we don't want to make assumption of running for all steps

$$arphi_5 = igvee_{i=1}^{p(|x|)} oldsymbol{S}(oldsymbol{q_a}, oldsymbol{i})$$

which means M enters accepts state at some time.

$arphi_6$: $oldsymbol{M}$ executes a unique instruction at each time

 $arphi_6$ asserts that $oldsymbol{M}$ executes a unique instruction at each time

$$arphi_6 = \bigwedge_{i=0}^{
ho(|x|)} \oplus (I(1,i),I(2,i),\ldots,I(m,i))$$

where *m* is max instruction number.

Variables:

 $\langle q_j, b_j, q'_j, b'_j, d_j \rangle$: jth instruction of M I(j, i): Instruction j was issued at time i. H(h, i): The head is at location h at time i. T(c, h, i): The tape at location h at time i stored the character c.

φ_7 : Tape changes only because of the head writing something

 φ_7 ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.

"If head is **not** at position h at time i then at time i+1 the symbol at cell h must be unchanged"

$$arphi_7 = \bigwedge_i \bigwedge_{\substack{h \ b
eq c}} \left(\overline{H(h,i)} \Rightarrow \overline{T(b,h,i) \bigwedge T(c,h,i+1)} \right)$$

since $\mathbf{A} \Rightarrow \mathbf{B}$ is same as $\neg \mathbf{A} \lor \mathbf{B}$, rewrite above in CNF form

$$arphi_7 = igwedge_i igwedge_h igwedge_{b
eq c} (extbf{\textit{H}}(extbf{\textit{h}}, extbf{\textit{i}}) ee
eg extbf{\textit{T}}(extbf{\textit{b}}, extbf{\textit{h}}, extbf{\textit{i}}) ee
eg extbf{\textit{T}}(extbf{\textit{c}}, extbf{\textit{h}}, extbf{\textit{i}} + 1))$$

 φ_8 : Transitions are done from correct states

jth instruction of M: $< q_j, b_j, q_j', b_j', d_j >$

$$\varphi_8 = \bigwedge_i \bigwedge_j (I(j,i) \Rightarrow S(q_j,i))$$

If instruction j is executed at time i then state at time i must be q_j .

Variables:

 $\left\langle oldsymbol{q_j}, oldsymbol{b_j}, oldsymbol{q_j'}, oldsymbol{b_j'}, oldsymbol{d_j}
ight
angle$: $oldsymbol{j}$ th instruction of $oldsymbol{M}$

I(j, i): Instruction j was issued at time i.

H(h, i): The head is at location h at time i.

 φ_9 : Transitions are done into correct state

jth instruction of M: $< q_j, b_j, q_j', b_j', d_j >$

$$arphi_{9} = igwedge_{i} igwedge_{j} (\emph{\emph{I}}(\emph{\emph{j}},\emph{\emph{i}}) \Rightarrow \emph{\emph{S}}(\emph{\emph{q}}_{j}',\emph{\emph{i}}+1))$$

If instruction j was performed at time i, then state at time i+1 must be q'_i .

Variables:

 $\left< oldsymbol{q_j}, oldsymbol{b_j}, oldsymbol{q_j'}, oldsymbol{b_j'}, oldsymbol{d_j}
ight>$: $oldsymbol{j}$ th instruction of $oldsymbol{M}$

I(j, i): Instruction j was issued at time i.

H(h, i): The head is at location h at time i.

 φ_{10} : The character written on tape that triggered an instruction, is the correct one

$$\varphi_{10} = \bigwedge_{i} \bigwedge_{h} \bigwedge_{j} [(I(j,i) \bigwedge H(h,i)) \Rightarrow T(b_{j},h,i)]$$

If instruction j was executed at time i and head was at position h, then cell h has the symbol needed to issue instruction j is written under the head location on the tape.

Variables:

 $\left\langle oldsymbol{q}_{j},oldsymbol{b}_{j},oldsymbol{q}_{j}',oldsymbol{b}_{j}',oldsymbol{d}_{j}'
ight
angle :$ $oldsymbol{j}$ th instruction of $oldsymbol{M}$

I(j, i): Instruction j was issued at time i.

H(h, i): The head is at location h at time i.

$arphi_{11}$: The correct symbol was written to the tape at time $m{i}$

$$arphi_{11} = \bigwedge_{i} \bigwedge_{h} \bigwedge_{h} [(I(j,i) \land H(h,i)) \Rightarrow T(b'_{j},h,i+1)]$$

If instruction j was executed time i with head at h, then at next time step symbol b'_j was written in position h

Variables:

 $\left\langle oldsymbol{q_j}, oldsymbol{b_j}, oldsymbol{q_j'}, oldsymbol{b_j'}, oldsymbol{d_j}
ight
angle$: $oldsymbol{j}$ th instruction of $oldsymbol{M}$

I(j, i): Instruction j was issued at time i.

H(h, i): The head is at location h at time i.

 $arphi_{12}$: Head was moved in the right direction at time i

$$\varphi_{12} = \bigwedge_{i} \bigwedge_{h} [(I(j,i) \land H(h,i)) \Rightarrow H(h+d_j,i+1)]$$

The head is moved properly according to instr j.

Variables:

 $\left\langle oldsymbol{q}_{j},oldsymbol{b}_{j},oldsymbol{q}_{j}',oldsymbol{b}_{j}',oldsymbol{d}_{j}'
ight
angle :$ $oldsymbol{j}$ th instruction of $oldsymbol{M}$

I(j, i): Instruction j was issued at time i.

H(h, i): The head is at location h at time i.

THE END

...

(for now)