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Cook-Levin Theorem
Theorem 24.1 (Cook-Levin).
SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language L ∈ NP, L ≤P SAT

Difficulty: Infinite number of languages in NP. Must simultaneously show a generic
reduction strategy.
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The plot against SAT
High-level plan to proving the Cook-Levin theorem

What does it mean that L ∈ NP?
L ∈ NP implies that there is a non-deterministic TM M and polynomial p() such that

L = {x ∈ Σ∗ | M accepts x in at most p(|x|) steps}

Input: M, x, p .
Question: Does M stops on input x after p(|x|) steps?

Describe a reduction R that computes from M, x, p a SAT formula ϕ.
I R takes as input a string x and outputs a SAT formula ϕ
I R runs in time polynomial in |x|, |M|
I x ∈ L if and only if ϕ is satisfiable
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The plot against SAT continued

〈x,M, p〉 ϕ
R

poly-time computable

ϕ is satisfiable if and only if x ∈ L
ϕ is satisfiable if and only if nondeterministic M accepts x in p(|x|) steps

BIG IDEA
I ϕ will express “M on input x accepts in p(|x|) steps”
I ϕ will encode a computation history of M on x
ϕ: CNF formula s.t if we have a satisfying assignment to it =⇒ accepting
computation of M on x down to the last details (where the head is, what transition is
chosen, what the tape contents are, at each step, etc).
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The Matrix Executions
Tableau of Computation

M runs in time p(|x|) on x. Entire computation of M on x can be represented by a
“tableau”

time

tape cell position

0

1

2

3

1 2 3 p(|x|)

p(|x|)

state q0

state q2

1 0 0 1

0 0 0 1

blanks

blanks

4

Row i gives contents of all cells at time i
At time 0 tape has input x followed by blanks
Each row long enough to hold all cells M might ever have scanned.
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Variables of ϕ
Four types of variables to describe computation of M on x
I T (b, h, i) : tape cell at position h holds symbol b at time i .

For h = 1, . . . , p(|x|), b ∈ Γ, i = 0, . . . , p(|x|).
I H(h, i): read/write head is at position h at time i .

Fir h = 1, . . . , p(|x|), and i = 0, . . . , p(|x|)
I S(q, i) state of M is q at time i .

For all q ∈ Q and i = 0, . . . , p(|x|) .
I I(j , i) instruction number j is executed at time i

M is non-deterministic, need to specify transitions in some way. Number
transitions as 1, 2, . . . , ` where jth transition is < qj , bj , q′

j , b ′
j , dj > indication

(q′
j , b ′

j , dj) ∈ δ(qj , bj), direction dj ∈ {−1, 0, 1}.
Number of variables is O(p(|x|)2|M|2)
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Notation
Some abbreviations for ease of notation∧m

k=1 xk means x1 ∧ x2 ∧ . . . ∧ xm∨m
k=1 xk means x1 ∨ x2 ∨ . . . ∨ xm⊕
(x1, x2, . . . , xk) is a formula that means exactly one of x1, x2, . . . , xm is true. Can

be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:∧
1≤i<j≤k

(xi ∨ xj)

Making sure that one of the variables is true:
∨k

i=1 xi .⊕
(x1, x2, . . . , xk) =

∧
1≤i<j≤k

(xi ∨ xj)
∧

(x1 ∨ x2 ∨ · · · ∨ xk).
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Clauses of ϕ
ϕ is the conjunction of 8 clause groups:

ϕ =
12∧

i=1

ϕi

where each ϕi is a CNF formula. Described in subsequent slides.

Property: ϕ is satisfied ⇐⇒ there is an execution of M on x that accepts the
language in p(|x|) time.
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THE END
...

(for now)
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