Algorithms & Models of Computation

CS/ECE 374, Fall 2020

24.3.3.2

The clause gadget

3 color this gadget.

Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

- (A) Yes.
- **(B)** No.

3 color this gadget II

Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

- (A) Yes.
- **(B)** No.

Clause Satisfiability Gadget

- 1. For each clause $C_i = (a \lor b \lor c)$, create a small gadget graph
 - gadget graph connects to nodes corresponding to a, b, c
 - ▶ needs to implement OR
- 2. OR-gadget-graph

Clause Satisfiability Gadget

- 1. For each clause $C_i = (a \lor b \lor c)$, create a small gadget graph
 - gadget graph connects to nodes corresponding to a, b, c
 - ▶ needs to implement OR
- 2. OR-gadget-graph:

OR-Gadget Graph

Property: if **a**, **b**, **c** are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- ▶ for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

Reduction

Claim 24.1.

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example 24.2. $\varphi = (u \lor \neg v \lor w) \land (v \lor x \lor \neg y)$ $\begin{array}{c} V_{\text{ariable and negations have complementory colors.} \\ \text{Literals get colors} \\ \text{T or F.} \end{array}$

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - ightharpoonup if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

${\it G}_{arphi}$ is 3-colorable implies ${\it arphi}$ is satisfiable

- \triangleright if v_i is colored True then set x_i to be True, this is a legal truth assignment.
- ▶ consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - ightharpoonup if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

G_{φ} is 3-colorable implies φ is satisfiable

- \triangleright if v_i is colored True then set x_i to be True, this is a legal truth assignmental
- consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - ightharpoonup if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

G_{φ} is 3-colorable implies φ is satisfiable

- \triangleright if v_i is colored True then set x_i to be True, this is a legal truth assignment
- consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - ightharpoonup if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

${\it G}_{\varphi}$ is 3-colorable implies ${\it \varphi}$ is satisfiable

- \triangleright if v_i is colored True then set x_i to be True, this is a legal truth assignment
- ▶ consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - ightharpoonup if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- ${\it G}_{\varphi}$ is 3-colorable implies ${\it \varphi}$ is satisfiable
 - \triangleright if v_i is colored True then set x_i to be True, this is a legal truth assignment
 - ▶ consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

THE END

...

(for now)