Algorithms & Models of Computation

CS/ECE 374, Fall 2020

24.3.3 Showing NP-Completeness of 3 COLORING

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

24.3.3.1

The variable assignment gadget

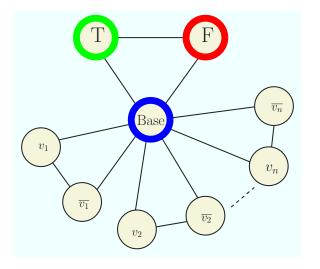
3-Coloring is **NP-Complete**

- ► 3-Coloring is in NP.
 - ightharpoonup Certificate: for each node a color from $\{1, 2, 3\}$.
 - ightharpoonup Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- ► Hardness: We will show 3-SAT \leq_P 3-Coloring.

- 1. φ : Given **3SAT** formula (i.e., **3**CNF formula).
- 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m .
- 3. Create graph $extbf{\emph{G}}_{arphi}$ s.t. $extbf{\emph{G}}_{arphi}$ 3-colorable $\iff arphi$ satisfiable.
 - ightharpoonup encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base
 - \blacktriangleright for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base
 - ▶ If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - Need to add constraints to ensure clauses are satisfied (next phase)

- 1. φ : Given **3SAT** formula (i.e., **3**CNF formula).
- 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m .
- 3. Create graph $extbf{\emph{G}}_{arphi}$ s.t. $extbf{\emph{G}}_{arphi}$ 3-colorable $\iff arphi$ satisfiable.
 - ightharpoonup encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base
 - \blacktriangleright for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
 - ▶ If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - Need to add constraints to ensure clauses are satisfied (next phase)

- 1. φ : Given **3SAT** formula (i.e., **3**CNF formula).
- 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m .
- 3. Create graph \mathbf{G}_{φ} s.t. \mathbf{G}_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base
 - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
 - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - ► Need to add constraints to ensure clauses are satisfied (next phase)


- 1. φ : Given **3SAT** formula (i.e., **3**CNF formula).
- 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m .
- 3. Create graph \mathbf{G}_{φ} s.t. \mathbf{G}_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base
 - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
 - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - ► Need to add constraints to ensure clauses are satisfied (next phase)

- 1. φ : Given **3SAT** formula (i.e., **3**CNF formula).
- 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m .
- 3. Create graph \mathbf{G}_{φ} s.t. \mathbf{G}_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base
 - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
 - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - Need to add constraints to ensure clauses are satisfied (next phase)

- 1. φ : Given **3SAT** formula (i.e., **3**CNF formula).
- 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m .
- 3. Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base
 - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
 - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - Need to add constraints to ensure clauses are satisfied (next phase)

- 1. φ : Given **3SAT** formula (i.e., **3**CNF formula).
- 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m .
- 3. Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base
 - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
 - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
 - Need to add constraints to ensure clauses are satisfied (next phase)

Assignment encoding using **3**-coloring

THE END

..

(for now)