Algorithms & Models of Computation CS/ECE 374, Fall 2020 # 24.3.3 Showing NP-Completeness of 3 COLORING ## Algorithms & Models of Computation CS/ECE 374, Fall 2020 ## 24.3.3.1 The variable assignment gadget ### 3-Coloring is **NP-Complete** - ► 3-Coloring is in NP. - ightharpoonup Certificate: for each node a color from $\{1, 2, 3\}$. - ightharpoonup Certifier: Check if for each edge (u, v), the color of u is different from that of v. - ► Hardness: We will show 3-SAT \leq_P 3-Coloring. - 1. φ : Given **3SAT** formula (i.e., **3**CNF formula). - 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m . - 3. Create graph $extbf{\emph{G}}_{arphi}$ s.t. $extbf{\emph{G}}_{arphi}$ 3-colorable $\iff arphi$ satisfiable. - ightharpoonup encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} . - create triangle with node True, False, Base - \blacktriangleright for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base - ▶ If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i - Need to add constraints to ensure clauses are satisfied (next phase) - 1. φ : Given **3SAT** formula (i.e., **3**CNF formula). - 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m . - 3. Create graph $extbf{\emph{G}}_{arphi}$ s.t. $extbf{\emph{G}}_{arphi}$ 3-colorable $\iff arphi$ satisfiable. - ightharpoonup encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} . - create triangle with node True, False, Base - \blacktriangleright for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base - ▶ If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i - Need to add constraints to ensure clauses are satisfied (next phase) - 1. φ : Given **3SAT** formula (i.e., **3**CNF formula). - 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m . - 3. Create graph \mathbf{G}_{φ} s.t. \mathbf{G}_{φ} 3-colorable $\iff \varphi$ satisfiable. - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} . - create triangle with node True, False, Base - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i - ► Need to add constraints to ensure clauses are satisfied (next phase) - 1. φ : Given **3SAT** formula (i.e., **3**CNF formula). - 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m . - 3. Create graph \mathbf{G}_{φ} s.t. \mathbf{G}_{φ} 3-colorable $\iff \varphi$ satisfiable. - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} . - create triangle with node True, False, Base - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i - ► Need to add constraints to ensure clauses are satisfied (next phase) - 1. φ : Given **3SAT** formula (i.e., **3**CNF formula). - 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m . - 3. Create graph \mathbf{G}_{φ} s.t. \mathbf{G}_{φ} 3-colorable $\iff \varphi$ satisfiable. - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} . - create triangle with node True, False, Base - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i - Need to add constraints to ensure clauses are satisfied (next phase) - 1. φ : Given **3SAT** formula (i.e., **3**CNF formula). - 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m . - 3. Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable. - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} . - create triangle with node True, False, Base - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i - Need to add constraints to ensure clauses are satisfied (next phase) - 1. φ : Given **3SAT** formula (i.e., **3**CNF formula). - 2. φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m . - 3. Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable. - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} . - create triangle with node True, False, Base - ightharpoonup for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base - If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i - Need to add constraints to ensure clauses are satisfied (next phase) ## Assignment encoding using **3**-coloring # THE END .. (for now)