Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.4

Hamiltonian cycle in undirected graph

Hamiltonian Cycle

Problem 23.1.

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem 23.2.

Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- ▶ The problem is in **NP**; proof left as exercise.
- ► Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- ▶ Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}
- ightharpoonup A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- ▶ Replace each vertex \mathbf{v} by 3 vertices: \mathbf{v}_{in} , \mathbf{v} , and \mathbf{v}_{out}
- ightharpoonup A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- ▶ Replace each vertex \mathbf{v} by 3 vertices: \mathbf{v}_{in} , \mathbf{v} , and \mathbf{v}_{out}
- ightharpoonup A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Undirected to directed case

Undirected to directed case

Undirected to directed case

Reduction: Wrap-up

- ► The reduction is polynomial time (exercise)
- ► The reduction is correct (exercise)

THE END

...

(for now)