Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.3.4

If there is a Hamiltonian cycle \implies

∃satisfying assignment

Reduction: Hamiltonian cycle $\implies \exists$ satisfying assignment

We are given a Hamiltonian cycle in G_{φ} :

Want to extract satisfying assignment...

Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle

Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle

Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle

Reduction: Hamiltonian cycle $\implies \exists$ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle

Conclude: Hamiltonian cycle must go through each row completely from left to right, or right to left. As such, can be interpreted as a valid assignment.

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - ▶ If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- ightharpoonup Similarly, if Π enters c_j from vertex 3j+1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

- \triangleright Thus, vertices visited immediately before and after C_i are connected by an edge
- ightharpoonup We can remove c_j from cycle, and get Hamiltonian cycle in $G-c_j$
- ▶ Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

- Thus, vertices visited immediately before and after
 C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_j$
- Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

- Thus, vertices visited immediately before and after C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_i$
- Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

- Thus, vertices visited immediately before and after
 C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_j$
- Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Correctness Proof

We just proved:

Lemma 23.2.

 ${m G}_{arphi}$ has a Hamiltonian cycle $\implies arphi$ has a satisfying assignment lpha.

Lemma 23.3.

arphi has a satisfying assignment iff $oldsymbol{G}_{arphi}$ has a Hamiltonian cycle

Proof

Follows from Lemma 23.1 and Lemma 23.2

Correctness Proof

We just proved:

Lemma 23.2.

 $extbf{\emph{G}}_{arphi}$ has a Hamiltonian cycle $\implies arphi$ has a satisfying assignment lpha.

Lemma 23.3.

 φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.

Proof.

Follows from Lemma 23.1 and Lemma 23.2.

Summary

What we did:

- 1. Showed that **Directed Hamiltonian Cycle** is in **NP**.
- 2. Provided a polynomial time reduction from **3SAT** to **Directed Hamiltonian Cycle**.
- 3. Proved that φ satisfiable \iff $\textbf{\textit{G}}_{\varphi}$ is Hamiltonian.

Theorem 23.4.

The problem **Hamiltonian Cycle** in directed graphs is **NP-Complete**.

Summary

What we did:

- 1. Showed that **Directed Hamiltonian Cycle** is in **NP**.
- 2. Provided a polynomial time reduction from **3SAT** to **Directed Hamiltonian Cycle**.
- 3. Proved that φ satisfiable \iff $\textbf{\textit{G}}_{\varphi}$ is Hamiltonian.

Theorem 23.4.

The problem **Hamiltonian Cycle** in directed graphs is **NP-Complete**.

THE END

...

(for now)