Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.3.3

If there is a satisfying assignment, then there is a Hamiltonian cycle

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

3SAT formula φ :

$$\varphi = \left(x_1 \vee \neg x_2 \vee x_4\right)$$
$$\wedge \left(\neg x_1 \vee \neg x_2 \vee \neg x_3\right)$$

$$\emph{x}_1=\emph{0},\ \emph{x}_2=\emph{1},\ \emph{x}_3=\emph{0},\ \emph{x}_4=\emph{1}$$

Satisfying assignment: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

Conclude: If φ has a satisfying assignment then there is an Hamiltonian cycle in G_{φ} .

Correctness Proof

Lemma 23.1.

arphi has a satisfying assignment $lpha \implies \mathbf{G}_{\!arphi}$ has a Hamiltonian cycle.

Proof.

Let a be the satisfying assignment for φ . Define Hamiltonian cycle as follows

- ▶ If $\alpha(x_i) = 1$ then traverse path *i* from left to right
- ▶ If $\alpha(x_i) = 0$ then traverse path *i* from right to left
- ► For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause
- ► Clearly, resulting cycle is Hamiltonian.

THE END

...

(for now)